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Python network workflow
REST, JSON, GraphQL or gRPC?

Grigory Petrov
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What's next?
Speaker Grigory Petrov
Specialization Generalist
Role DevRel at Evrone
Experience 20 years
Talk time 30 minutes
Questions At the end of the talk, 15 minutes
Slides
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Let's use social networks to communicate
grigoryvp @evrone.com

t.me/ grigoryvp
fb.com/ grigoryvp
vk.com/ grigoryvp

github.com/ grigoryvp
twitter.com/ grigoryvp

instagram.com/ grigoryvp

4



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications

5



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.

6



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.

7



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.

8



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.

9



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.
● Year 2003: Rails with its opinion about REST, JSON and URLs.

10



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?

11



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload.

12



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.

13



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.

14



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.
● JSON payloads.

15



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.
● JSON payloads.
● Existing browsers and servers.
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Why so popular?
Roy Fielding, REST author ● Co-authored URI and HTTP.

● Battle-tested "Web" since 1994.
● "REST" is "Web".
● Well suited for CRUD.
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Some history of network communications
● 1990s: CORBA RPC
● 2000s: SOAP RPC
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.
● Year 2003: Rails with it's opinion about REST, JSON and URLs.
● Year 2004: Gmail
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Evolution from SSR to SPA
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We expect "applications" to be fast
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We expect "application" reaction under 150ms
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Network efficiency challenge
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Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.
● 6-connection limit.
● Underfetching.
● Over-fetching and internet speed.
● Payload size.
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● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.
● Also, not to confuse with:

○ OpenAPI and RAML API definition languages.
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REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.
● Also, not to confuse with:

○ OpenAPI and RAML API definition languages.
○ "JSON Schema" data definition language.
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REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"
● Falcon: threads, native REST support.
● Eve: specifically for REST.
● aiohttp-apispec
● ... and much more.
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○ N+1 issue.
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● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
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Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth, pagination, duplicates, binary, recursion.
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Other challengers: GraphQL
● Graphene with graphene-django.
● Ariadne, Strawberry, Tartiflette, tartiflette-aiohttp.
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Other challengers: gRPC
● Publicly released by Google in 2015.
● Trades REST "resources" for transfer efficiency.
● Fast, low-level, backend-to-backend.
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Other challengers: gRPC
● Official grpcio-tools generator from Google.
● mypy-protobuf from Dropbox.
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Other challengers: HTTP/2
● Spec published in 2015.
● Fixes TCP and HTTP issues.
● Brings back REST!
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Other challengers: HTTP/2
● Hypercorn with ASGI for Quart.
● Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
● Django-channels, Sanic, Twisted.
● Or just use the HTTP/2 proxy.
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Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

○ Can be replaced with HTTP/2 for some use cases.
● REST is best with CRUD, but not limited to it.
● We can mix REST, RPC, gRPC, GraphQL, AMQP.
● Existing environment and business needs matters.
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Questions?

The End
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