
1



@grigoryvp Grigory Petrovbit.ly/pyneten2

Python network workflow
REST, JSON, GraphQL or gRPC?

Grigory Petrov



@grigoryvp Grigory Petrovbit.ly/pyneten

What's next?
Speaker Grigory Petrov
Specialization Generalist
Role DevRel at Evrone
Experience 20 years
Talk time 30 minutes
Questions At the end of the talk, 15 minutes
Slides

3



@grigoryvp Grigory Petrovbit.ly/pyneten

Let's use social networks to communicate
grigoryvp @evrone.com

t.me/ grigoryvp
fb.com/ grigoryvp
vk.com/ grigoryvp

github.com/ grigoryvp
twitter.com/ grigoryvp

instagram.com/ grigoryvp

4



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications

5



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.

6



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.

7



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.

8



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.

9



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC.
● 2000s: SOAP RPC.
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.
● Year 2003: Rails with its opinion about REST, JSON and URLs.

10



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?

11



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload.

12



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.

13



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.

14



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.
● JSON payloads.

15



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Complexity offload into:

● URLs.
● HTTP Headers.
● JSON payloads.
● Existing browsers and servers.

16



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Roy Fielding, REST author

17



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Roy Fielding, REST author ● Co-authored URI and HTTP.

18



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Roy Fielding, REST author ● Co-authored URI and HTTP.

● Battle-tested "Web" since 1994.

19



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Roy Fielding, REST author ● Co-authored URI and HTTP.

● Battle-tested "Web" since 1994.
● "REST" is "Web".

20



@grigoryvp Grigory Petrovbit.ly/pyneten

Why so popular?
Roy Fielding, REST author ● Co-authored URI and HTTP.

● Battle-tested "Web" since 1994.
● "REST" is "Web".
● Well suited for CRUD.

21



@grigoryvp Grigory Petrovbit.ly/pyneten

Some history of network communications
● 1990s: CORBA RPC
● 2000s: SOAP RPC
● Year 2000: Roy Fielding REST doctoral dissertation.
● Year 2002: SalesForce, eBay introduce RESTful external APIs.
● Year 2003: Rails with it's opinion about REST, JSON and URLs.
● Year 2004: Gmail

22

Hi!



@grigoryvp Grigory Petrovbit.ly/pyneten

Evolution from SSR to SPA

23



@grigoryvp Grigory Petrovbit.ly/pyneten

We expect "applications" to be fast

24



@grigoryvp Grigory Petrovbit.ly/pyneten

We expect "application" reaction under 150ms

25



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge

26



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.

27



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.

28



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.
● 6-connection limit.

29



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.
● 6-connection limit.
● Underfetching.

30



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.
● 6-connection limit.
● Underfetching.
● Over-fetching and internet speed.

31



@grigoryvp Grigory Petrovbit.ly/pyneten

Network efficiency challenge
● TCP 3-way handshake, graceful shutdown and RTT latency.
● HTTPS handshake.
● 6-connection limit.
● Underfetching.
● Over-fetching and internet speed.
● Payload size.

32



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge

33



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js

34



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.

35



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.

36



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.

37



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming:

○ "json api" is same as "web api" or "RESTful api".

38



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming:

○ "json api" is same as "web api" or "RESTful api".
○ "jsonapi" (website).

39



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming:

○ "json api" is same as "web api" or "RESTful api".
○ "jsonapi" (website).
○ "json-api" (github).

40



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming:

○ "json api" is same as "web api" or "RESTful api".
○ "jsonapi" (website).
○ "json-api" (github).

41



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.
● Also, not to confuse with:

42



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.
● Also, not to confuse with:

○ OpenAPI and RAML API definition languages.

43



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● May 2013, "JSON:API" extracted from Ember.js
● Compound documents.
● Sparse fieldsets.
● And really bad naming.
● Also, not to confuse with:

○ OpenAPI and RAML API definition languages.
○ "JSON Schema" data definition language.

44



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge

45



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.

46



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"

47



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"
● Falcon: threads, native REST support.

48



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"
● Falcon: threads, native REST support.
● Eve: specifically for REST.

49



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"
● Falcon: threads, native REST support.
● Eve: specifically for REST.
● aiohttp-apispec

50



@grigoryvp Grigory Petrovbit.ly/pyneten

REST evolution to answer the efficiency challenge
● Django Rest Framework with drf_yasg.
● Connexion: Flask, can consume "swagger.yaml"
● Falcon: threads, native REST support.
● Eve: specifically for REST.
● aiohttp-apispec
● ... and much more.

51



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL

52



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL

53



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.

54



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.

55



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.

56



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost.

57



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.

58



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.

59



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache.

60



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth.

61



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth, pagination.

62



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth, pagination, duplicates.

63



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth, pagination, duplicates, binary.

64



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Publicly released by Facebook in 2015.
● Based on RESTish Graph API and FQL experience.
● Trades REST "uniform interface" for transfer efficiency.
● At a cost:

○ N+1 issue.
○ No namespaces, scheme is flat.
○ Cache, auth, pagination, duplicates, binary, recursion.

65



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL

66



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Graphene with graphene-django.

67



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: GraphQL
● Graphene with graphene-django.
● Ariadne, Strawberry, Tartiflette, tartiflette-aiohttp.

68



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC

69



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC
● Publicly released by Google in 2015.

70



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC
● Publicly released by Google in 2015.
● Trades REST "resources" for transfer efficiency.

71



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC
● Publicly released by Google in 2015.
● Trades REST "resources" for transfer efficiency.
● Fast, low-level, backend-to-backend.

72



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC

73



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC
● Official grpcio-tools generator from Google.

74



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: gRPC
● Official grpcio-tools generator from Google.
● mypy-protobuf from Dropbox.

75



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2

76



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Spec published in 2015.

77



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Spec published in 2015.
● Fixes TCP and HTTP issues.

78



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Spec published in 2015.
● Fixes TCP and HTTP issues.
● Brings back REST!

79



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2

80



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Hypercorn with ASGI for Quart.

81



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Hypercorn with ASGI for Quart.
● Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).

82



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Hypercorn with ASGI for Quart.
● Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
● Django-channels, Sanic, Twisted.

83



@grigoryvp Grigory Petrovbit.ly/pyneten

Other challengers: HTTP/2
● Hypercorn with ASGI for Quart.
● Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
● Django-channels, Sanic, Twisted.
● Or just use the HTTP/2 proxy.

84



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference

85



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

86



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

○ Can be replaced with HTTP/2 for some use cases.

87



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

○ Can be replaced with HTTP/2 for some use cases.
● REST is best with CRUD, but not limited to it.

88



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

○ Can be replaced with HTTP/2 for some use cases.
● REST is best with CRUD, but not limited to it.
● We can mix REST, RPC, gRPC, GraphQL, AMQP.

89



@grigoryvp Grigory Petrovbit.ly/pyneten

Conclusion What I want to discuss at this conference
● GraphQL and JSON:API are net hacks.

○ Can be replaced with HTTP/2 for some use cases.
● REST is best with CRUD, but not limited to it.
● We can mix REST, RPC, gRPC, GraphQL, AMQP.
● Existing environment and business needs matters.

90



@grigoryvp Grigory Petrovbit.ly/pyneten

Questions?

The End

91


