
Meir Shpilraien (@Meir_Shpilraien)
Redislabs, Software Architect

RedisGears

● What is Redis?
● What is RedisGears and how it works?
● Streaming processing with python and RedisGears
● Redis(Gears) and Python integration
● RedisAI and RedisGears
● Demos, Demos, and more Demos

Agenda

Redis is an open source (BSD licensed), in-memory data
structure store, used as a database, cache and message broker. It
supports data structures such as strings, hashes, lists, sets,
sorted sets with range queries, bitmaps, hyperloglogs,
geospatial indexes with radius queries and streams. Redis has
built-in replication, Lua scripting, LRU eviction, transactions
and different levels of on-disk persistence, and provides high
availability via Redis Sentinel and automatic partitioning with Redis
Cluster.

What is Redis?

RedisGears is a Serverless engine for multi-model
and cluster operations in Redis, supporting both

event driven as well as batch operations
● Almost always agnostic from redis topology (stand alone, cluster, enterprise)
● Built in coordinator for cluster support
● Built in map/reduce operations
● Support full embedded Python and C api
● Built as a Redis module

What is RedisGears?

Using RedisGears - Mapping Example

Keys
Reader

Map
Operation

keys: value

Results
Record

Using RedisGears
RedisGears allow defining a pipe of operations

• Returning value from one operation pass to the operation that
follows it in the pipe

• Last operation returning the result to the user
• First operation is called ‘reader’ - responsible for providing

data
– Keys reader - read keys from Redis
– Stream reader - read streams from Redis
– Python reader - allow to user to write his own readers in

python
• Data units that pass through the pipe are called Records

Using RedisGears

Using RedisGears

Using RedisGears

Using RedisGears

Imdb Example
create the pipe builder
builder = GB(‘KeysOnlyReader’)

get from each hash the genres field
builder.map(lambda x:execute('hget', x, 'genres'))

filter those who do not have genres
builder.filter(lambda x: x is not None)

split genres by comma
builder.flatmap(lambda x: x.split(','))

count for each genre the number of times it appears
builder.countby()

start the execution
builder.run()

How does it Work on Cluster
• RedisGears handles the distribution on the execution to all the

nodes in the cluster
• Local operation runs in parallel on the shards (map, filter, ...)
• Accumulate operations (groupby, countby, ...) requires the

data to be reshuffled such that records belong to the same
group will be located on the same shard.

– Each shard perform the reduce function locally and
continue the execution

• On done, the results returns to the shard that start the
execution (the initiator) and it returns the data back to redis

How does it Work on Cluster

Shard1 Shard2

• Count distinct values example

key1 : 1
key2 : 2
key3 : 2

key4 : 2
key5 : 3
key6 : 1

Gears Gears

How does it Work on Cluster

Shard1 Shard2

• Values are extracted from redis

key1 : 1
key2 : 2
key3 : 2

key4 : 2
key5 : 3
key6 : 1

Gears Gears

Records: 1, 2,
2

Records: 2, 3,
1

How does it Work on Cluster

Shard1 Shard2

• Data is reshaffeled such that records from same group will be
located on same shard

key1 : 1
key2 : 2
key3 : 2

key4 : 2
key5 : 3
key6 : 1

Gears Gears

Records: 2, 2,
2

Records: 3, 1,
1

How does it Work on Cluster

Shard1 Shard2

• Count distinct is performed on each shard separately

key1 : 1
key2 : 2
key3 : 2

key4 : 2
key5 : 3
key6 : 1

Gears Gears

Records: 2: 3 times Records: 3 : 1 time,
1: 2 times

How does it Work on Cluster

Shard1 Shard2

• Collect the data

key1 : 1
key2 : 2
key3 : 2

key4 : 2
key5 : 3
key6 : 1

Gears Gears

Records: 2: 3 times,
3 : 1 time, 1: 2 times

Stream Processing with RedisGears
● RedisGears expose a Streaming API which allows triggers

executions on events
○ Redis Streams events
○ Redis Keys events

● The following will maintain a set of all the keys in redis
create the builder
builder = GB()

filter events on key:'all_keys'
builder.filter(lambda x: x['key'] != 'all_keys')

add the keys to 'all_keys' set
builder.map(lambda x:execute('sadd', 'all_keys', x['key']))

register the execution on key space notification
builder.register()

RedisGears Architecture

Execution
Management

Cluster
Management Map/Reduce

C API

Python
More language integrations to

come...

Core

Base API

User API

RedisGears and Python
● RedisGears expose a C level api which can be used by

anyone.
● RedisGears runs an embedded python interpreter that

uses the C level api to interact with RedisGears, such
interaction allow the python interpreter to perform:
○ MapReduce Operations
○ Streaming Processing

● RedisGears take care of cluster management and
distribute operations

Embedded Python Pros and Cons
Pros:

● Fast - Direct memory access to redis internal objects
● Less memory usage

○ No need to copy the date to another process
○ Instead of starting multiple interpreters we create

sub-interpreters
● Easier to show and control memory allocation in redis info

report

Embedded Python Pros and Cons
Cons:

● Different clients share the same interpreter
● It is not possible to run python code from 2 client

simultaneously (will be solved in future python releases)
● A bug in the interpreter might cause redis to crash - Less

secure

Python Sub-Interpreters

declare a global counter
global Counter

Count how many keys there are in redis
GB().foreach(lambda x: Counter+=1).run()

Client 1

declare a global counter
global Counter

Count how many keys contains ‘foo’
GB().filter(lambda x:
x[‘key’].contains(‘foo’)).foreach(lambda x:
Counter+=1).run()

Client 2

Python Sub-Interpreters

A sub-interpreter is a (almost) totally separate environment for the execution of
Python code. The Python C API makes it possible to create a new sub-interpreter using
Py_NewInterpreter, destroy it using Py_EndInterpreter and switch between sub-
interpreters using PyThreadState_Swap. RedisGears invokes these internally and
maintains the association between the user's call to RG.PYEXECUTE and its respective
sub-interpreter.

Python Sub-Interpreters

declare a global counter
global Counter

Count how many keys contains ‘foo’
GB().filter(lambda x: x[‘key’].contains(‘foo’)).foreach(lambda x:
Counter+=1).register()

Python Sub-Interpreters
When RG.PYEXECUTE is called, a new sub-interpreter is created to execute the provided
script. That sub-interpreter is also "inherited" by all subsequent operations - i.e.
executions, registrations and timeEvents, that the script creates. Because there may be
multiple owner for the sub-interpreter, RedisGears keeps an internal reference count
for each one so it can be safely freed.

Python Interpreter with Redis Allocator

● The python interpreter allows setting custom memory allocators
● We used this ability to allow the python interpreter to use the Redis memory

allocator
○ The python memory usage is showed in redis ‘info memory’ command
○ We can control and limit the amount of memory used by the interpreter
○ Future plans: control the amount of memory used by sub-interpreter, i.e -

limit used memory by a single client

Python and Clustering
● Cluster operations require serialize and deserialize

python object between redis shards
○ It also require serializing python functions between

the shards
● For such serialization RedisGears make use of CloudPickle
● When execution is created, all the python function listed

by the execution is distributed to all the shards
● When execution is running, records might sent from one

shard to another (for example during groupby) using
CloudPickle serialization

https://github.com/cloudpipe/cloudpickle

Python and Clustering
● Some objects can not be serialized:

○ Native (C implemented) objects like tensors, numpy
matrix, ...

● Those objects will need to be transformed to a serialized
object before sent to another shard

● Currently its the user responsibility to transform them
otherwise the execution will failed.

RedisAI
● RedisAI:

○ A new Redis module that allow running AI models directly on
redis

○ Expose Tensors and Models as Redis Data Types
○ Expose C api for other modules to use it directly (direct

function call)
○ Create tensore
○ Run models

● RedisAI comes in handy when your data already located on redis
○ Get it out of Redis to Run a tensorflow model is time

consuming
○ Instead we can run the tensetflow model directly on redis

● Use Cases:
○ Stream Data classification like: Image processing, Sound

recognition
○ Fraud Detection

RedisGears & RedisAI
● RedisAI expose a direct C api that can be used by other redis

modules
● RedisGears can use the C api to expose AI capabilities via the

python interpreter
○ PyTensor and PyGraphRunner are two Native objects expose

to the Gears python interpreter and allow the user to run AI
model via the gear script

RedisGears & RedisAI

Links
https://redis.io/
https://oss.redislabs.com/redisgears/
https://oss.redislabs.com/redisai/
https://github.com/RedisGears/RedisGears
https://github.com/RedisGears/AnimalRecognitionDemo
https://github.com/RedisGears/EdgeRealtimeVideoAnalytics
https://github.com/RedisGears/redisgears-py

https://redis.io/
https://oss.redislabs.com/redisgears/
https://oss.redislabs.com/redisai/
https://github.com/RedisGears/RedisGears
https://github.com/RedisGears/AnimalRecognitionDemo
https://github.com/RedisGears/EdgeRealtimeVideoAnalytics
https://github.com/RedisGears/redisgears-py

Thanks You

