Django ORM:
a fight between MTI and STI

dj L

About

e Have been developing Python projects for the
past 10 years

e Most recent projects are fintech startups
e Development Lead in S

About

e Have been developing Python projects for the
past 10 years
e Most recent projects are fint

A lot of code ahead!

e Development Lead in

Domain layer

Domain layer

=] |nvestment Account

=4 Credit Card Account
@ Loan Account

Python: simple class inheritance

Python: simple class inheritance

class FinancialAccount:
name = ...
member = ...
balance = ...

class CreditCardAccount(FinancialAccount):
due_date = ...
available_credit = ...

class LoanAccount(FinancialAccount):
interest_rate = ...
recurring_payment

Relational DB: built-in inheritance

PostgreSQL built-in inheritance is available since version 7

create table financial_account (id, name, balance, member_id);

create table credit_card_account (due_date, available_credit)

INHERITS (financial_account);

create table loan_account (interest_rate, recurring_payment)

INHERITS (financial_account);

One SQL query can fetch all
common fields + different one

id, name, member, balance

select * from financial_account;

id, name, member, balance,
select * from credit_card_account: _ due_date, available_credit

id, name, member, balance,
select * from loan_account; — interest_rate, recurring_payment

Under the hood

explain select * from financial_account;

QUERY PLAN

Append (...)
-> Seq Scan on financial_account (...)
-> Seq Scan on credit_card_account (...)

-> Seq Scan on loan_account (...)

Let's select all accounts data

select t1.%*,
t2.interest_rate, t2.recurring_payment,
t3.available_credit, t3.due_date
from financial_account as t1
left join loan_account as t2
on t1.id = t2.1id
left join credit_card_account as t3
on t1.id = t3.1id

where t1.member_id = X;

Not so easy, right?

select t1.%*,

t2.interest_rate, t2.recurring_payment,

t3.available_credit, t3.due_date
from financial_account as t1
left join loan_account as t2
on t1.id = t2.1id
left join credit_card_account as t3
on t1.id = t3.1id

where t1.member_id = X;

-

Table identification is
missed in the response!

-

~

Qiwi

. Bcé npowe

What if... UNIQUE CONSTRAINT!

alter table financial_account add constraint account_name_unique UNIQUE (name);

insert into loan_account (name, ...) values ('Account 1', ...);
insert into loan_account (name, ...) values ('Account 1', ...);
insert into credit_card_account (name, ...) values ('Account 1', ...);

insert into credit_card_account (name, ...) values ('Account 1', ...);

Not so obvious, but
UNIQUE CONSTRAINTS
are not inherited

Build-in inheritance: keep in mind

UNIQUE CONSTRAINTS and REFERENCES are not
inherited

ALTER TABLE will surprise you for sure

You still have to do JOIN's to gather all accounts
data

Django team refused to add built-in inheritance
support because of this mess, see
hitps://code.djangoproject.com/ticket/24632

https://code.djangoproject.com/ticket/24632

Build-in inheritance: when?

You are a DBA
You deal with partitioning (see p. 1)
You hate ORMs (see p.1)

You are fully aware of what are you doing (see
p.1)

Django ORM: emulation of inheritance

e Abstract Base Classes
e Multi-table Inheritance

e Single Table Inheritance

Abstract Base Classes

class FinancialAccount(models.Model):
name =
member =
balance =

class Meta:
abstract = True

class CreditCardAccount(FinancialAccount):
due_date =
available_credit =

class LoanAccount(FinancialAccount):
interest_rate = .
recurring_payment =

Abstract Base Classes

class FinancialAccount(models.Model):
name =
member =
balance =

class Meta:
abstract = True

class CreditCardAccount(FinancialAccount):
due_date =
available_credit =

class LoanAccount(FinancialAccount):
interest_rate = .
recurring_payment =

Abstract Base Classes: reality

class CreditCardAccount(models.Model):

name = ... Table 1:
member = ...)

id, name, member, balance,
balance = ...

due_date, available_credit
due_date = ...

available_credit = ...

class LoanAccount(models.Model):

name = ...
Table 2:
member = ...
balance = ... id, name, member, balance,
interest_rate = ... interest_rate, recurring_payment

recurring_payment = ...

Abstract Base Classes

e The inheritance does exists at code level only

e Data is stored in separate tables

Let’s try to fetch all data at once

Expectation

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>]>

Let’s try to fetch all data at once

Expectation

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>]>

Reality

AttributeError: type object 'FinancialAccount' has no
attribute 'objects’

Abstract Base Classes

Tables are not connected, so you have to do N SQL
queries to fetch all accounts for a particular member and
then perform merge operation in application’s code

There are no CONSTRAINTS for common fields (like
“name”

Simple to add new fields and make migrations

Parent class can be easily reused

ABC: summary

Tables are not connected, so you have to do N SQL
queries to fetch all accounts for a particular member and
then perform merge operation in application’s code

You still can join tables
by member id!

But ORM does not help.

Abstract Base Classes: when?

Mixins (PermissionsMixin for example)

Some external requirements force you to store each
domain class data into a separate table: access
permissions, complex replication or partitioning, specific
highload profile

You develop a framework or a package

You consider JOINs too slow

Multi-table Inheritance

Common fields are stored in one
table, different fields in child tables.

MTI: under the hood

Simple model inheritance (technically -
OneToOneField + select_related)

Explicit OneToOneField usage

Generic Relation / Polymorphic Associations via
ContentType framework @z

MTI: simple model inheritance

class FinancialAccount(models.Model):
name =
member =
balance =

class CreditCardAccount(FinancialAccount):
due_date =
available_credit =

class LoanAccount(FinancialAccount):
interest_rate =
recurring_payment =

We have a connection between tables

class FinancialAccount(models.Model):
name =
member =
balance =

class CreditCardAccount(FinancialAccount):

due_date =
available_credit =

class LoanAccount(FinancialAccount):
interest_rate =
recurring_payment = ...

Table 1:
id, name, member, balance

Table 2:
__ <table1_name>_ptr_id,
due_date, available_credit

Table 3:

_— <table1_name>_ptr_id,
interest_rate, recurring_payment

ORM doesn'’t fetch related data

Expectation

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>]>

ORM doesn'’t fetch related data

Expectation

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>]>

Reality

>>> FinancialAccount.objects.all()

<QuerySet [<FinancialAccount: 1>, <FinancialAccount: 2>]>

Any SQL query to child table lead to
INNER JOIN with parent-table

>>> CreditCardAccount.objects.all()
<QuerySet [<CreaditCardAccount: 1>, ...]>

SELECT =*

FROM "credit_card_account”
INNER JOIN "financial_account”
ON (...)

Any SQL query to child table lead to
INNER JOIN with parent-table

>>> CreditCardAccount.objects.all()
<QuerySet [<CreaditCardAccount: 1>, ...]>

SELECT =*

FROM "credit_card_account”
INNER JOIN "financial_account”
ON (...)

You can solve this with only, defer, values
or explicit OneToOneField

Django-polymorphic

from polymorphic.models import PolymorphicModel

class FinancialAccount(PolymorphicModel):

Profit?

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>, ...]>

Django-polymorphic

from polymorphic.models import PolymorphicModel

class FinancialAccount(PolymorphicModel):

3 SQL queries and 2
Profit? JOINs included

>>> FinancialAccount.objects.all()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2,

Django-polymorphic

Executes K+1 SQL-queries with 1 INNER JOIN
Adds new model field (ContentType)
Requires migration for existing DB tables
Good Django-admin integration

Eye-candy ORM-based query syntax

django-model-utils.InheritanceManager

from model_utils.managers import InheritanceManager

class FinancialAccount(Model):

objects = InheritanceManager()

Profit!

>>> FinancialAccount.objects.select_subclasses()

<QuerySet [<CreditCardAccount: 1>, <LoanAccount: 2>, ...]>

django-model-utils.InheritanceManager

SELECT ...

FROM "financial_account”

LEFT OUTER JOIN "credit_card_account” ON (...)
LEFT OUTER JOIN "loan_account" ON (

"financial_account”."id" =
"loan_account"."financialaccount_ptr_id")

django-model-utils.InheritanceManager

>>> FinancialAccount.objects.select_subclasses().filter(
Q(loanaccount__interest_rate__gt=1) |

Q(creditcardaccount__available_credit__lte=100)

django-model-utils.InheritanceManager

Plug-in-play and easy to use
Ld) Generic Django-ORM syntax

| Executes ONLY ONE SQL-query to gather all the
necessary data via LEFT OUTER JOIN

ommr . eomm)

MTI: summary

Data is normalized
Possible SQL queries overhead

More complex coding required if you need to
deal with all children in one context (e.g.
sorting and merging)

New child — new table

MTI: when?

Few child tables
Nested inheritance
Supported by ORM out of the box

Proven-by-the-time solution

Single Table Inheritance

e All data is stored in one table, data is
denormalized

e Child objects logic is handled on a code level

e Django-ORM does not support STI out of the
box, even via proxy-models

Classic way: django-typed-models
class FinancialAccount(TypedModel):
type = models.CharField(db_index=True)
class CreditCardAccount(FinancialAccount):
due_date = models.DateField(null=True)
available_credit = models.DecimalField(..., null=True)
class LoanAccount(FinancialAccount):

interest_rate = models.DecimalField(..., null=True)
recurring_payment = models.DecimalField(..., null=True)

Classic way: django-typed-models

Single table:

id, name, member, balance,

type,

due_date (NULL), available_credit (NULL),
interest_rate (NULL), recurring_payment (NULL)

Classic: django-typed-models
1 SQL to fetch all the data
All fields in child tables — nullable

The more child tables, the more nullable
columns in the main table

Low cardinality index (type field)

High coupling between classes (one table
underhood)

Semi-structured: JSON Field

class AccountType(IntEnum) :
credit_card = auto()
loan = auto()

class FinancialAccount(models.Model):
name = ...
member = ...
balance = ...

models.SmallIntegerField(choices=[(...) for ... in AccountType])
JSONField()

type
data

Semi-structured: JSON Field

Just one SQL query to perform sorting and
selection

L&) ORM to describe relations and DB schema, but
not the same for JSON

? Support and performance?

JSON: state of support in Postgres

JSOBb — JSQuery — SQL:2016 — JSONPath (12)

SQL standard provides additional index operators
and functions to effectively work with JSONb
flelds:

hitps://habr.com/ru/company/postgrespro/blog/4
48612/

https://habr.com/ru/company/postgrespro/blog/448612/
https://habr.com/ru/company/postgrespro/blog/448612/

JSONField: problems and solutions

Problem: high coupling code

FinancialAccount.objects.filter(
type=AccountType.credit_card,
member=user,
data__balance__gt=0

) .select_related('member').order_by('-created')

JSONField: problems and solutions

Solution: move logic to Django-managers

FinancialAccount
.credit_cards
.for_member (user)
.with_positive_balance()

JSONField: problems and solutions

Solution: get highly reusable code

FinancialAccount
.credit_cards
.for_member (user)
.active()
.with_positive_balance()

JSONField: problems and solutions

Solution: get highly reusable code

This approach can be
used anywhere!

JSONField: problems and solutions

Problem: save/update method causes sending all
the contents of the JSON field to the database

>>> account.data[' 'interest_rate'] = 102

>>> account.save(update_fields=("'account',))

JSONField: problems and solutions

Solution: django-postgres-extensions and PG
function jsonb_set

django-postgres-extensions

from psycopg2.extras import Json

from django_postgres_extensions.models.functions import JSONBSet
account = FinancialAccount.objects.get(id=...)

FinancialAccount.objects.filter(id=account.id) .update(

data=JSONBSet('data', ['recurring_payment'], Json(2600))

JSONField: problems and solutions

Problem: there is no schema description and
validation for JSSONField - it's really annoying and
complicates development

JSONField: problems and solutions

Solution: pydantic + JSONSchemedField

pydantic + JSONSchemedField

class CreditCardData(pydantic.BaseModel):
due_date: datetime.datetime
available_credit: decimal.Decimal

class LoanData(pydantic.BaseModel):
interest_rate: decimal.Decimal
recurring_payment: decimal.Decimal

Bcé npowe

Pydantic schemes + Union

class CreditCardData(pydantic.BaseModel):
due_date: datetime.datetime
available_credit: decimal.Decimal
class LoanData(pydantic.BaseModel):

interest_rate: decimal.Decimal
recurring_payment: decimal.Decimal

AccountData = Union[CreditCardData, LoanData]

class FinancialAccount(models.Model):

data: AccountData = JSONSchemedField(schema=AccountData)

) QIWI

JSONSchemedField benefits

Data validation on save
Returns schema objects instead of a dictionary

Autocomplete!

Useful autocomplete!

account = FinancialAccount()

account.data.|
m copy (self, include, exclude, update, deep) BaseModel
m dict(self, include, exclude, by_alias, sk.. BaseModel

f due_date CreditCardData
p’ fields BaseModel
m from_orm(cls, obj) BaseModel
1 if expr
ifn if expr is None
ifnn if expr is not None
f interest_rate LoanData

m json(self, include, exclude, by_alias, sk.. BaseModel

. . .
maA s - = N P 1 P NN l = ~r .

A4 and 1 will move caret down and up in the editor Next Tip

JSONSchemedField benefits

Implementation: htips://qit.io/Je8IQ

https://git.io/Je8IQ

STI (JSON): when?

If your queries use filtering by a common field
Most of the time you need all data from JSON
column (it’s pretty complex to fetch only
specific keys from JSON)

You don't need complex CONSTRAINTS

You are not a DBA

ABC vs MTI vs STI: summary

One table or multiple ones on high throughput?
Performance?
Usability?

Shema (db) vs semi-structured (code)?

Thank you!

Thank you!

Questions?

