
Catch that asteroid with poliastro!Catch that asteroid with poliastro!

poli
Astrodynamics in Python

astro

Juan Luis Cano - 2018-11-02 PiterPy #5 @ Crowne Plaza, Saint PetersburgJuan Luis Cano - 2018-11-02 PiterPy #5 @ Crowne Plaza, Saint Petersburg

OutlineOutline
Introduction1.
poliastro2.
Challenges

ValidationA.
Performance & API designB.
Community buildingC.

3.

How to contribute4.

Who am I?Who am I?
Aerospace Engineer with a passion for orbits 🛰
Chair of the Python España non pro�t and co-organizer of PyCon Spain���
Software Developer at Satellogic��
Free Software advocate and Python enthusiast 🕮
Hard Rock lover �����

Follow me! https://github.com/Juanlu001/ (https://github.com/Juanlu001/)

Quick intro to Orbital MechanicsQuick intro to Orbital Mechanics
Physics → Mechanics → Celestial Mechanics → Orbital MechanicsPhysics → Mechanics → Celestial Mechanics → Orbital Mechanics

A branch of Mechanics (itself a branch of Physics) that studies
practical problems regarding the motion of rockets and other
human-made objects through space

But why do bodies orbit?But why do bodies orbit?
The long explanation for another day :) As a summary, let's visualize this experiment
imagined by Newton:

If it's so simple, why all the fuss?If it's so simple, why all the fuss?
Dif�cult to measure: these things move at around ~8 000 meters per second
(Barcelona-Madrid in one minute) and GPS precision is not that good
...But great accuracy is required: we want to take pictures of speci�c places from
700 kilometers distance!
Many perturbations: the Earth is not a sphere, the Moon is very close, the sunlight
pushes the satellite (yes!)...
If you lose contact with the satellite, it's a needle in a haystack

In []: from IPython.display import YouTubeVideo
YouTubeVideo("iEQuE5N3rwQ", width=800, height=600)

poli
Astrodynamics in Python

astro

Introduction to poliastroIntroduction to poliastro

Pure Python, accelerated with numba
MIT license (permissive)
Physical units, astronomical scales and more, thanks to Astropy
Conversion between several orbit representations
Analytical and numerical propagation
Cool documentation ������

Latest version 0.11.0

poliastro is Python library for Astrodynamics and Orbital
Mechanics, focused on interactive and friendly use and with an
eye on performance.

https://docs.poliastro.space/
(https://docs.poliastro.space/)

https://docs.poliastro.space/en/latest
/changelog.html#poliastro-0-11-0-2018-09-21 (https://docs.poliastro.space
/en/latest/changelog.html#poliastro-0-11-0-2018-09-21)

Brief historyBrief history
2013: First version: Octave + FORTRAN + Python
2014: Refactor of the API, much friendlier
2015: Replace FORTRAN algorithms by Python + numba ������
2016: Izzo algorithm (Lambert's problem), 6th ICATT @ ESA
2017: Summer of Code in Space (SOCIS), OpenAstronomy & Astropy
membership, 1st OSCW @ ESOC
2018: Google Summer of Code (GSOC), #PyAstro18 @ Simons Fndn, expansion
into the industry

Orbit plottingOrbit plotting
In [3]: r = [-6045, -3490, 2500] * u.km

v = [-3.457, 6.618, 2.533] * u.km / u.s

ss = Orbit.from_vectors(Earth, r, v, Time.now())
ss

In [4]: plot(ss, label="Sample orbit");

Out[3]: 7283 x 10293 km x 153.2 deg (GCRS) orbit around Earth (♁) at epoch 2018-11-02
05:55:57.620007 (UTC)

In [5]: plot3d(ss, label="Sample orbit");

Out[5]:

External dataExternal data

In [11]: frame = plot_solar_system(epoch=Time.now().tdb, outer=False)

frame.plot(halley_1835, label='Halley', color='#666666')
frame.plot(florence, label='Florence', color='#000000')

plt.title("Inner solar system + Florence + Halley")
plt.xlim(-.3e9, .3e9)
plt.ylim(-.3e9, .3e9);

In [13]: halleys = dastcom5.orbit_from_name('1P')

frame = OrbitPlotter(num_points=200)
frame.plot(halleys[0], label='Halley')
frame.plot(halleys[5], label='Halley')
frame.plot(halleys[10], label='Halley')
frame.plot(halleys[20], label='Halley')
frame.plot(halleys[30], label='Halley');

ChallengesChallenges
ValidationValidation

Unit testing a function with clear expectations is trivial. What are
my expectations on numerical algorithms?

The wrooooooooooooooong way:

In [14]: def sinc(x):
return np.sin(x) / x

In [15]: import pytest

In [16]: @pytest.mark.parametrize("x", [0, 1, 10])
def test_sinc(x):

assert sinc(x) == np.sin(x) / x

In [17]: 0.1 + 0.2 == 0.3

In [18]: 0.2 + 0.3 == 0.5

Out[17]: False

Out[18]: True

A better way:

Compare against some authoritative source: external data or software
Do �oating point comparisons right and use tolerances
Leverage advance features such as pytest �xtures and automatic test generation
with hypotheses https://github.com/HypothesisWorks/hypothesis/
(https://github.com/HypothesisWorks/hypothesis/)

In [19]: def test_convert_from_rv_to_coe():
Data from Vallado, example 2.6
attractor = Earth
p = 11067.790 * u.km
ecc = 0.83285 * u.one
inc = 87.87 * u.deg
raan = 227.89 * u.deg
argp = 53.38 * u.deg
nu = 92.335 * u.deg
expected_r = [6525.344, 6861.535, 6449.125] * u.km
expected_v = [4.902276, 5.533124, -1.975709] * u.km / u.s

r, v = ClassicalState(attractor, p, ecc, inc, raan, argp, nu).rv()

assert_quantity_allclose(r, expected_r, rtol=1e-5)
assert_quantity_allclose(v, expected_v, rtol=1e-5)

Still some issues:

How much precision do you ask for? Should you carry a mathematical analysis?
What if your results don't match? Sometimes, book or paper authors respond to
your comments... And sometimes don't
The changes in precision are a result of bad data, or worse algorithms?
How do you even track improvements?

External data (short summary)External data (short summary)

Nobody cares

Those who care, don't share it

Those who share, do it with 1 decimal place (true story)

Those who share with 16 decimal places, don't describe how it was obtained (i.e.
release the source)

Those who release the source, make it impossible to compile

External softwareExternal software
Sometimes commercial
Is it validated itself? (See above)
It is often dif�cult to reproduce the exact setting and algorithms, most of the times
because your commercial software is much more complex

...If you're really interested, go read my Final Masters Project: https://github.com
/juanlu001/pfc-uc3m (https://github.com/juanlu001/pfc-uc3m)

Performance and API designPerformance and API design
We want to be as user friendly as possible
This includes protecting the user from common mistakes
Two annoying sources of errors: physical units and reference frames

But performance comes at a price
Yes, Python is slow (compared to compiled languages)
The places where we don't notice it is because the underlying code is compiled
(e.g. NumPy)

Then, how to accelerate the code?

VectorizationVectorization
Rewriting some code leveraging high level NumPy functions can make it way
faster
However, this works best for array manipulation - some other algorithms cannot
easily be vectorized
And even if you can, vectorized code can be impossible to read

CythonCython

Mature, widely used, effective, gradual - a great project!
Some personal problems with it:

I don't know any C, so it's more dif�cult for me
I wanted poliastro to be super easy to install by avoiding the "two
language" problem (this includes Windows)
The native debugger is broken

I really don't want to worry about some gore details

I don't have lots of experience with it, so I don't have solid arguments against it.

https://github.com/Juanlu001/cython-
rasterio-debugging/issues/2 (https://github.com/Juanlu001/cython-
rasterio-debugging/issues/2)

PyPyPyPy

PyPy is a super interesting alternative Python implementation

I really really want to use it more, but there are some obstacles:
The documentation is a bit poor, even the changelogs
Lacks interest from the mainstream community (including snarky
comments by Guido about "nobody using it in production")
Support in conda is half-broken

PyPy has several incompatibilities with manylinux1 wheels

manylinux2010 are almost there, but need the �nal push

https://pypy.org/
(https://pypy.org/)

https://github.com/conda-forge/pypy2.7-
feedstock/issues/1 (https://github.com/conda-forge/pypy2.7-feedstock
/issues/1)

https://bitbucket.org/pypy/pypy/issues/2617/ (https://bitbucket.org
/pypy/pypy/issues/2617/)

https://github.com/pypa/manylinux/issues/179 (https://github.com
/pypa/manylinux/issues/179)

numbanumba

numba is a Python-to-LLVM JIT compiler
When it works, it's super effective and the results are impressive!
Debugging improved a lot lately
However, its focus is numerical code: it won't accelerate high level Python
features
At the moment it's not even possible to pass a function as an argument, impeding
reusability https://github.com/numba/numba/issues/2952 (https://github.com
/numba/numba/issues/2952)

In [32]: def monte_carlo_pi(nsamples):
acc = 0
for ii in range(nsamples):

x = random.random()
y = random.random()
if x ** 2 + y ** 2 < 1.0:

acc += 1
return 4.0 * acc / nsamples

In [33]: print(monte_carlo_pi(10))
print(monte_carlo_pi(1_000_000))

In [34]: %timeit monte_carlo_pi(1_000_000)

2.4
3.142732

390 ms ± 9.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [35]: from numba import njit # Forget about jit! Only nopython mode

fast_monte_carlo_pi = njit(monte_carlo_pi)

In [37]: %timeit -n1 -r1 fast_monte_carlo_pi(1_000_000)

In [38]: %timeit fast_monte_carlo_pi(1_000_000)

17.4 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

12.7 ms ± 282 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [60]: %%numba_annotate
from numba import jit # https://github.com/numba/numba/issues/2788#issuecommen
t-435288763

@jit
def monte_carlo_pi(nsamples):
 acc = 0
 for ii in range(nsamples):
 x = random.random()
 y = random.random()
 if x ** 2 + y ** 2 < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

print(monte_carlo_pi(1_000_000))

Out[60]: Function name: monte_carlo_pi
in �le: /tmp/tmp_3pipx1l/code.py
with signature: (int64,) -> pyobject
3: @jit

4: def monte_carlo_pi(nsamples):

 5: acc = 0

 6: for ii in range(nsamples):

 7: x = random.random()

 8: y = random.random()

 9: if x ** 2 + y ** 2 < 1.0:

 10: acc += 1

 11: return 4.0 * acc / nsamples

Nice, high level API

Dangerous™ algorithms

SolutionSolution
So... let's make our code Fortran-esque!

High level API:

Supports mixed units and time scales, �gures out the rest
Easy to use and impossible to get wrong
Slow

Dangerous™ algorithms:

Fast (easy to accelerate with numba or Cython)
Only cares about numbers, makes assumptions on units (SI, TBD)
You can mess it up

In [61]: @u.quantity_input(E=u.rad, ecc=u.one)
def E_to_nu(E, ecc):

"""True anomaly from eccentric anomaly."""
return (E_to_nu_fast(E.to(u.rad).value, ecc.value) * u.rad).to(E.unit)

Measure everything!Measure everything!
http://poliastro.github.io/poliastro-benchmarks (http://poliastro.github.io/poliastro-
benchmarks)

Community buildingCommunity building

Sometimes, language wins over performance.
Sometimes, documentation wins over features.
Sometimes, marketing wins over quality.

Go �nd your users!

I believe the choice of license is an important one, and I advocate
a BSD-style license. In my experience, the most important
commodity an open source project needs to succeed is users.

-- John Hunter † http://nipy.org/nipy/faq/johns_bsd_pitch.html
(http://nipy.org/nipy/faq/johns_bsd_pitch.html)

How to contribute?How to contribute?
First and foremost: no astrodynamics knowledge required!
Lots of issues with plotting, testing, internal design...
Everything that �ts de scope

 and is aligned with the
vision

 is welcome!
If you use the library and �nd bugs or outdated docs, we would love to know!
And if you do something cool, we can publish a success story

Comment on issues, join our chat, let's talk!

https://github.com/poliastro/poliastro#can-i-do-
insert-awesome-thing-with-poliastro (https://github.com/poliastro
/poliastro#can-i-do-insert-awesome-thing-with-poliastro)

https://github.com/poliastro/poliastro/wiki/Core-principles
(https://github.com/poliastro/poliastro/wiki/Core-principles)

https://docs.poliastro.space/en/latest/#success-stories
(https://docs.poliastro.space/en/latest/#success-stories)

Per Python ad astra!������
Slides:

poliastro chat:

Twitter:

большое спасибо!большое спасибо!

https://github.com/poliastro/piterpy5-talk (https://github.com/poliastro
/piterpy5-talk)

https://riot.im/app/#/room/#poliastro:matrix.org (https://riot.im
/app/#/room/#poliastro:matrix.org)

https://twitter.com/poliastro_py (https://twitter.com/poliastro_py)

