
Image
processing
in 2017

Alexander Karpinsky
Uploadcare.com

About myself
Pillow core team member.

Maker of the Pillow-SIMD library.

1

https://python-pillow.org/
https://github.com/uploadcare/pillow-simd

What I do
On-the-fly image processing service in Uploadcare.

• High performance

• Reliability

• Scalability

• Built on top of Pillow-SIMD

2

Libraries

3

Pillow
• PIL fork (Python Imaging Library). Founded in 1995

• Native extension for Python

• Supported versions: 2.7, 3.3+, pypy, pypy3

python-pillow.org

4

https://python-pillow.org/

Pillow-SIMD
• Since May 2016

• Drop-in replacement for Pillow

• Instruction sets: SSE4 (by default), AVX2

github.com/uploadcare/pillow-simd

5

https://github.com/uploadcare/pillow-simd

OpenCV
• Stands for Open Computer Vision. Founded in 2000

• Includes a popular Python binding

• Supported versions: 2.7, 3.4+. No pypy support

opencv.org

6

https://opencv.org/

VIPS
• Founded in 1993, ahead of its time

• The "pyvips" binding is supported by the author

• Supported versions: 2.7, 3.3+, pypy, pypy3

jcupitt.github.io/libvips/

7

https://jcupitt.github.io/libvips/

ImageMagick & GraphicsMagick
• Well-known libraries. Founded in 1990

• The "Wand" binding is based on ctypes and looks abandoned

• The "pgmagick" binding is based on Boost.Python. No pypy support

imagemagick.org, graphicsmagick.org

8

https://www.imagemagick.org/
http://graphicsmagick.org/

Performance

9

3

3, 3

Always check your output
from PIL import Image, ImageFilter.BoxBlur

im.filter(ImageFilter.BoxBlur())

...

import cv2

cv2.blur(im, ksize=())

...

01.

02.

03.

01.

02.

03.

10

The problem
cv2.GaussianBlur(im, (window, window), radius)

radius = 3 58 ms radius = 30 880 ms

11

The problem
im.filter(ImageFilter.GaussianBlur(radius))

radius = 3 60 ms radius = 30 61 ms

12

Resampling speed in Pillow, Mpx/s

13

Resampling speed in Pillow, Mpx/s

14

Resampling speed in Pillow, Mpx/s

15

Resampling speed in Pillow, Mpx/s

16

Pillow-SIMD speeds up
• Resampling: 4 — 7 times

• Gaussian blur: 2.8 times

• Kernel filter 3×3 or 5×5: 11 times

• Multiplication and division by alpha channel: 4 and 10 times

• Alpha compositing: 5 times

• And counting…

17

Some sequence of operations, Mpx/s
Load, rotate by 90°, reduce 2.5 times, apply blur, save to JPEG.

18

Some sequence of operations, Mpx/s
Results when you invest some time.

19

Benchmarking framework
Results page

https://python-pillow.org/pillow-perf/

Benchmark sources

https://github.com/python-pillow/pillow-perf

20

https://python-pillow.org/pillow-perf/
https://github.com/python-pillow/pillow-perf

Concurrent working

21

Performance metrics
• Actual execution time for one operation execution

Important on desktops.

• Operations flow throughput

Becomes more important on servers.

22

Concurrent working levels
1. Application level

Actual execution time doesn't change.

Throughput grows in proportion to the number of cores.

23

Concurrent working levels
2. Graphical operation level

Actual execution time lowers.

Throughput grows not in proportion to the number of cores.

24

Concurrent working levels
3. Data and CPU instructions level (SIMD)

Actual execution time lowers.

Throughput grows.

Win-win.

25

Combining methods

SIMD

operation

level

application

level

26

Multithreading
Release GIL

Pillow, OpenCV, pyvips, Wand

Doesn't release

pgmagick

27

The N + 1 rule
Create not more than N + 1 workers,

where N is a number of CPU cores or threads.

Worker — a process or thread doing the processing.

28

process_image

Asynchronous work
Executing imaging operations blocks event loop,

even if a library releases GIL.

@gen.coroutine

def get(self, *args, **kwargs):

 im = (...)

 ...

01.

02.

03.

04.

29

1

yield

Asynchronous work
@run_on_executor(executor=ThreadPoolExecutor())

def process_image(self, ...):

 ...

@gen.coroutine

def get(self, *args, **kwargs):

 im = process_image(...)

 ...

01.

02.

03.

04.

05.

06.

07.

30

File input/output

31

%time

1.2 ms

Lazy loading
>>> from PIL import Image

>>> im = Image.open('cover.jpg')

Wall time:

>>> im.mode, im.size

('RGB', (2152, 1345))

01.

02.

03.

04.

05.

32

%time

1.2 ms

%time

73.6 ms

Lazy loading
>>> from PIL import Image

>>> im = Image.open('cover.jpg')

Wall time:

>>> im.mode, im.size

('RGB', (2152, 1345))

>>> im.load()

Wall time:

01.

02.

03.

04.

05.

06.

07.

33

IOError

Broken images mode
from PIL import Image

Image.open('trucated.jpg').save('trucated.out.jpg')

: image file is truncated (143 bytes not processed)

01.

02.

03.

34

LOAD_TRUNCATED_IMAGES

Broken images mode
from PIL import Image, ImageFile

ImageFile. = True

Image.open('trucated.jpg').save('trucated.out.jpg')

01.

02.

03.

35

Pillow VIPS OpenCV IM

Number of codecs 17 12+ 8 66

Broken images ✅ ✅ ✅ ✅

Lazy loading ✅ ✅ ❌ ❌

Reading EXIF and ICC ✅ ✅ ❌ ✅

Auto rotation based on EXIF ❌ ✅ ✅ ✅

36

OpenCV quirks
cv2.imread(filename)

• Auto rotates JPEG files based on EXIF

• Ignores alpha channel in PNG files

37

cv2.IMREAD_UNCHANGED

OpenCV quirks
cv2.imread(filename, flags=)

• Preserves alpha channel in PNG files

• Stops EXIF-based autorotation

38

OpenCV, why?
• Few codecs

• No lazy loading

• No access to EXIF and ICC

• Odd flags

OpenCV is not designed to work with untrusted sources.

39

Solution

40

numpy.array

Solution
OpenCV images are numpy arrays.

import numpy

from PIL import Image

...

pillow_image = Image.open(filename)

cv_image = (pillow_image)

01.

02.

03.

04.

05.

41

Image.fromarray

Solution
import numpy

from PIL import Image

...

pillow_image = (cv_image, "RGB")

pillow_image.save(filename)

01.

02.

03.

04.

05.

42

Questions
Slides: homm.github.io/image-libs-2017/

Email: ak@uploadcare.com

43

https://homm.github.io/image-libs-2017/
mailto:ak@uploadcare.com

