
Saint Petersburg
3-4 November 2017

Power through simplicity

Use of Python in the
Meson build system

Jussi Pakkanen
ЮССИ ПАККАНЕН

@jpakkane
Rakettitiede oy

Finland

Contact information

Let’s talk about
building software.

Meson build system in a nutshell

● Build system for many languages
● Supports Linux, OSX, Windows, iOS, Android
● Must scales to tens of thousands of files
● Optimized for programmer productivity
● Pure Python 3
● Use of any dependency outside Python

standard library is forbidden

Who is using it

● systemd
● GStreamer multimedia framework
● Many Gnome projects such as Gnome Builder,

Gnome Software, GTK, Glib
● Pitivi video editor
● X server, Wayland, Mesa graphics stack
● See website for a full list

Why are they using it?

Why did people transition
from Perl to Python?

Readability
Clarity

Understandability

Also speed

Meson’s defining feature is
its domain specific language

for defining builds.

A simple example

project(‘sample’, ‘c’)

dep = dependency(‘glib-2.0’)

exe = executable(‘myprog’, ‘prog.c’,

 dependencies : dep)

test(‘mytest’, exe)

What does a build system
actually do?

The simple level

Compiler
& Linker

Source
code

Dependencies Output

Compiler
arguments

The advanced level

Source
code

Source
code

Library Executable

The expert level

Source
code

Source
code

Executable

Executable

Those are all the primitives
you need to create a build system.

No, really.

Peculiarities of national code

Every language has its own
quirks but the overall workflow

is mostly the same.

A rough outline of workflow

● Read build definition files
● Run checks on the system, such as

determining the sizes of primitives
● Evaluate target dependency graph
● Serialise graph to build steps
● Write serialisation in backend format
● Reinit self on reconfiguration

More specifically

● String parsing and manipulation
● Running external programs and parsing their

output
● Graphs of moderate size (~ 1-1000 targets)
● Cross platform file manipulation
● Cross platform process management
● For dependencies, cross platform network

operations

These are the things
Python excels at.

Let’s compare sizes
of different build systems.

Data from openhub.net.

GNU Autotools

23 000 lines of autoconf
87 000 lines of shell
14 000 lines of Perl

CMake

900 000 lines of C/C++
210 000 lines of CMakescript

Google Bazel

630 000 lines of Java
370 000 lines of C and C++

Meson

25 000 lines of Python
5000 lines of C and C++

An order of magnitude in size
is a big difference in understanding.

Easier to hack on and contribute.

This is the power of Python.

Laborious things become simple.

Good tools and the correct level
of abstraction allow you to do

great things.

Would it make sense to
rewrite Meson in a different language?

Maybe.

But not due to performance.

Duck typing makes large
Python codebases hard to
understand and refactor

Putting it all together.

Let’s create a
Python extension module.

Using

C
C++
Rust

Fortran

In a single module

The Meson build definition

project(‘polysnake’, ‘c’, ‘cpp’, ‘rust’, ‘fortran’)

py3_mod = import(‘python3’)

py3_dep = dependency(‘python3’)

rustlib = static_library(‘func’, ‘func.rs’)

py3_mod.extension_module(‘polysnake’,

 ‘polysnake.c’, ,’func.cpp’, ‘ffunc.f90’,

 link_with : rustlib,

 dependencies : py3_dep)

Simple things are simple.

Hard things are possible.

Life is too valuable to spend
babysitting compiler flags.

In conclusion

● Python will become a core build dependency
for the userland of a modern Linux system

● Efficient use of Python’s strengths can yield
roughly the same functionality in 1/10th of lines
of code

● Building source code has gotten a lot easier
and less aggravating

● Simplicity is power!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

