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Rick
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Video game Rick!!
(The environment)
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Available actions

1. Move Up
2. Move down
3. Move Right
4. Move left
5. Pickup Morty
6. Portal gun
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Videogame Rick!

● Rick starts at a random 
location

● Walls make rick crash “|”
● He can pick up Morty
● Invalid pickup → Crash
● Invalid portal gun → 

Everybody dies
● Portal gun + signal→ Win
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The state space
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State space
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Videogame representations
Visual Graph Vector

[4, 4, 1, 4]
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Defining a 
reward -10
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+10

+1

+5

+8
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Real world reward sucks: Vary widely in scale
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Real world reward sucks: They are sparse

+1 Win / -1 Loss - +20 Win 
-  -1 Otherwise
- -10 Illegal action 16



2. RL in Python
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OpenAI gym

● Contains different agents for testing RL algorithms

● Common interface in all the environments

● Wide range of different environments

● De facto standard
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http://www.youtube.com/watch?v=5SEEwqRH8_c
http://www.youtube.com/watch?v=FV2s9flTN0s


OpenAI gym usage

while not done:
  env.render()  # Display the environment
  random_action = env.action_space.sample()  # Sample an action    
observation, reward, done, info = env.step(random_action)

import gym                 
env = gym.make('Taxi-v2')  # Create an environment

observation = env.reset()  # Reset the env before stepping it
done = False
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OpenAI Roboschool
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https://blog.openai.com/roboschool/
https://docs.google.com/file/d/0B4O5UYhOTkQYNVBhRUlNXzdMYTQ/preview
https://docs.google.com/file/d/0B4O5UYhOTkQYczk0S0lmTzJrNFU/preview


OpenAI Universe
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https://github.com/openai/universe


Intel Nervana Coach
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https://www.intelnervana.com/reinforcement-learning-coach-intel/


Intel Nervana Coach

24

https://www.intelnervana.com/reinforcement-learning-coach-intel/


DeepMind Lab
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https://deepmind.com/research/open-source/open-source-environments/
http://www.youtube.com/watch?v=M40rN7afngY


Deepind Pysc2: - StarCraft II Learning Environment
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https://github.com/deepmind/pysc2


3. RL Algorithms
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Value Function

- Rewards for nodes

- Expected reward achievable from a given 
state, if we follow the given policy

- Encodes knowledge about future

28



The Value Iteration algorithm

- Algorithm for calculating a value function

- It consists in propagating the rewards backwards

- Assumes full knowledge of the state space

- Assumes the state space is iterable
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   value_function = np.zeros(n_states)
   # this will loop for n_iters * n_states * n_actions = 3,000,000 times
   for i in range(n_iters):
       for state in range(n_states):
           new_value = 0
           # Get maximum expected reward for all the available actions
           # value_function[state] = max(value_function[next state] + reward)  
           for action in range(n_actions):
               next_state, reward= transitions[state, action]
               action_value = value_function[next_state] + reward
               new_value = max(new_value, action_value)
           # This can only increase the old value_function
           value_function[state] = new_value
   return value_function

def value_iteration(transitions, n_iters: int=1000, n_states: int=500, n_actions: int=6):
   """Action value function using value iteration. It propagates backwards the expected
    rewards by iterating several times over all the available (state, action) pairs.
   """
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Value iteration animation: Asbolute value function
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https://docs.google.com/file/d/0B4O5UYhOTkQYcjFJOEpCZG44Vkk/preview


Value iteration animation: Relative value function
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https://docs.google.com/file/d/0B4O5UYhOTkQYWjlMbUZJbTNqcWs/preview


Value iteration animation: Relative value function
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https://docs.google.com/file/d/0B4O5UYhOTkQYNWxFQkNYVnpERjQ/preview


Value iteration: Pros & Cons

- Choose state with max value function → Perfect game
- Complies with the definition of a good reward

Pros

Cons
- Requires knowledge of every future state of the system
- We need to compute the values for every state
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The fog of war effect

Already visited
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Q learning

- Algorithm meant to overcome the problems of 
value iteration

- No need to search the entire state space

- Same idea of propagating the score backwards
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Q learning

  for i in range(n_iters):
      while not terminal:
  action = sample_from_exploration_policy(current_state)
          # Q value update
          next_state, reward, terminal, info = videogame_rick.step(action)
          q_table = update_q(current_state, action, videogame_rick.transitions, alpha, gamma)
          

current_state = update_current_state(next_state, terminal)
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Q value update

def update_q(q_table, transitions, state, action, alpha, gamma):
reward, next_state = transitions[state][action][1:3]
# q_table is a n_states * num_actions array. It stores the q val for each (state, 
action)
old_q_sa = q_table[state, action]
max_future_q = max(q_table[next_state, :]) - old_q_sa   # Estimated future reward 
# Formula above
q_table[state, action] = (1 - alpha) * old_q_sa + alpha * (reward + gamma * 
max_future_q)
return q_table
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Q Learning: Pros & Cons

- Choose action with max Q value → Perfect game
- Complies with the definition of a good reward
- No need to use a perfect transitions matrix
- Proven to converge in the limit

Pros

Cons
- Requires an exploration policy → Only learns from memory
- “The limit” can be infeasible in practice
- The Q table can be extremely large
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Deep RL parameter hell 

- Exploration policy params
- Optimizer
- Advantage
- Architecture
- Opt params: LR, momentum...

- Batch size
- Gradient update freq.
- Loss clipping
- Gradient clipping
- Random seed!?
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4. Deep Reinforcement learning
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Deep Reinforcement learning

- Allows traditional algorithms to scale with increasing state 
space complexity

- Replaces the Q value / Value function tables with a DNN

- Defines an objective function to train the network
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Deep RL paradigm shift

It is all about minimizing         
a loss function

Replaces “Tables”              
with “black boxes”

A bunch of new 
metaparameters

Need to stabilize gradients
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Deep Q learning

error =  Hubber_loss(                 -  (reward + gamma *                  ))

Q(S | t=0) Q(S | t=1)

- Tensors as input → DNN train on 
batches

- Requires applying masks

- A lot of variants to improve stability

- Extremely dependent on 
metaparameters
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Policy Gradient

- Change the probability of the network of choosing a 
given action

- Use a Q like function (Advantage) to influence the 
decisions of the network when defining the loss

- Let backpropagation take care of the rest
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Policy Gradient
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Machine Learning

RL

Superv. Unsup.

● Training / Test 
dataset

● Labeled data

● A big enough 
dataset

● No Labels

● Generate the dataset
● Build label from rewards
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Useful things to remember

- No control over how features are learned

- Only learning from memory

- Exploration is key

- Converges to a local minima
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Dirty tricks that happen to work
- Reward & lives clipping

- Gradient & loss clipping

- Use a memory to decorrelate samples

- Batch normalization & Regularization

- Computer vision tricks are welcome
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https://docs.google.com/file/d/0B4O5UYhOTkQYcHpBbHR4ZkNLVXc/preview
http://www.youtube.com/watch?v=8NLaNJhxkVA
http://www.youtube.com/watch?v=j0w7fuoJuD0
http://www.youtube.com/watch?v=SmSTW4RHjr0


Mandatory slide about me
Guillem Duran Ballester

- Telecommunications engineer
- Data Science enthusiast & PyData Mallorca organiser
- Worked as an AI engineer at source{d}
- 4 years learning AI for the pleasure of finding things out
- Learning to be a developer

54



Thank you!

@Miau_DB Guillem-db55



5. Appendix
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RL fundamentals

- Notebooks on AI: State space structure

- A Karpathy blog: Playing Pong with a DQN

- Let’s make a DQN

- David Silver UCL course on RL & videos

- Nando de Freitas course, mostly DL
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http://karpathy.github.io/2016/05/31/rl/
https://jaromiru.com/2016/09/27/lets-make-a-dqn-theory/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/user/ProfNandoDF/videos


Environment libraries

- OpenAI Roboschool: Robot simulation

- OpenAI Universe: gym on VNC servers inside docker 
containers

- Intel Nervana Coach: Environments + DLR algorithms

- Deepmind Lab:

- Deepmind Pysc2: Star Craft 2 - like environments
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https://blog.openai.com/roboschool/
https://github.com/openai/universe
https://www.intelnervana.com/reinforcement-learning-coach-intel/
https://deepmind.com/research/open-source/open-source-environments/
https://github.com/deepmind/pysc2


Deep RL libraries

- Tensorflow Agents

- OpenAI baselines

- PyTorch-rl

- Keras-rl

- Tensorforce

- Nervana Coach
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https://github.com/tensorflow/agents
https://github.com/openai/baselines
https://github.com/jingweiz/pytorch-rl
https://github.com/matthiasplappert/keras-rl
https://github.com/reinforceio/tensorforce


Papers

- Agents on Starcraft 2

- Imagination Augmented Agents

- Alphago zero

- Evolutionary strategies
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https://deepmind.com/documents/110/sc2le.pdf
https://arxiv.org/abs/1707.06203
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://arxiv.org/abs/1703.03864


The reward

- Scalar that measures “how good an action is”

- Associated to an (state, action) tuple

- The better the action, the higher the reward

- It should have high sensibility → Change frequently
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