
RL for developers
Guillem Duran Ballester

Saint Petersburg
3-4 November

2017

Index
1. Introduction to Reinforcement Learning
2. RL libraries in python
3. RL Algorithms
4. Deep Reinforcement learning
5. Apendix: Useful resources

2

3

Rick

4

Video game Rick!!
(The environment)

5

6

Available actions

1. Move Up
2. Move down
3. Move Right
4. Move left
5. Pickup Morty
6. Portal gun

7

Videogame Rick!

● Rick starts at a random
location

● Walls make rick crash “|”
● He can pick up Morty
● Invalid pickup → Crash
● Invalid portal gun →

Everybody dies
● Portal gun + signal→ Win

8

The state space

9

State space

10

11

Videogame representations
Visual Graph Vector

[4, 4, 1, 4]

12

13

Defining a
reward -10

-10

+10

+1

+5

+8

14

Real world reward sucks: Vary widely in scale

15

Real world reward sucks: They are sparse

+1 Win / -1 Loss - +20 Win
- -1 Otherwise
- -10 Illegal action 16

2. RL in Python

17

OpenAI gym

● Contains different agents for testing RL algorithms

● Common interface in all the environments

● Wide range of different environments

● De facto standard

18

19

http://www.youtube.com/watch?v=5SEEwqRH8_c
http://www.youtube.com/watch?v=FV2s9flTN0s

OpenAI gym usage

while not done:
 env.render() # Display the environment
 random_action = env.action_space.sample() # Sample an action
observation, reward, done, info = env.step(random_action)

import gym
env = gym.make('Taxi-v2') # Create an environment

observation = env.reset() # Reset the env before stepping it
done = False

20

OpenAI Roboschool

21

https://blog.openai.com/roboschool/
https://docs.google.com/file/d/0B4O5UYhOTkQYNVBhRUlNXzdMYTQ/preview
https://docs.google.com/file/d/0B4O5UYhOTkQYczk0S0lmTzJrNFU/preview

OpenAI Universe

22

https://github.com/openai/universe

Intel Nervana Coach

23

https://www.intelnervana.com/reinforcement-learning-coach-intel/

Intel Nervana Coach

24

https://www.intelnervana.com/reinforcement-learning-coach-intel/

DeepMind Lab

25

https://deepmind.com/research/open-source/open-source-environments/
http://www.youtube.com/watch?v=M40rN7afngY

Deepind Pysc2: - StarCraft II Learning Environment

26

https://github.com/deepmind/pysc2

3. RL Algorithms

27

Value Function

- Rewards for nodes

- Expected reward achievable from a given
state, if we follow the given policy

- Encodes knowledge about future

28

The Value Iteration algorithm

- Algorithm for calculating a value function

- It consists in propagating the rewards backwards

- Assumes full knowledge of the state space

- Assumes the state space is iterable

29

 value_function = np.zeros(n_states)
 # this will loop for n_iters * n_states * n_actions = 3,000,000 times
 for i in range(n_iters):
 for state in range(n_states):
 new_value = 0
 # Get maximum expected reward for all the available actions
 # value_function[state] = max(value_function[next state] + reward)
 for action in range(n_actions):
 next_state, reward= transitions[state, action]
 action_value = value_function[next_state] + reward
 new_value = max(new_value, action_value)
 # This can only increase the old value_function
 value_function[state] = new_value
 return value_function

def value_iteration(transitions, n_iters: int=1000, n_states: int=500, n_actions: int=6):
 """Action value function using value iteration. It propagates backwards the expected
 rewards by iterating several times over all the available (state, action) pairs.
 """

30

Value iteration animation: Asbolute value function

31

https://docs.google.com/file/d/0B4O5UYhOTkQYcjFJOEpCZG44Vkk/preview

Value iteration animation: Relative value function

32

https://docs.google.com/file/d/0B4O5UYhOTkQYWjlMbUZJbTNqcWs/preview

Value iteration animation: Relative value function

33

https://docs.google.com/file/d/0B4O5UYhOTkQYNWxFQkNYVnpERjQ/preview

Value iteration: Pros & Cons

- Choose state with max value function → Perfect game
- Complies with the definition of a good reward

Pros

Cons
- Requires knowledge of every future state of the system
- We need to compute the values for every state

34

The fog of war effect

Already visited

35

Q learning

- Algorithm meant to overcome the problems of
value iteration

- No need to search the entire state space

- Same idea of propagating the score backwards

36

Q learning

 for i in range(n_iters):
 while not terminal:
 action = sample_from_exploration_policy(current_state)
 # Q value update
 next_state, reward, terminal, info = videogame_rick.step(action)
 q_table = update_q(current_state, action, videogame_rick.transitions, alpha, gamma)

current_state = update_current_state(next_state, terminal)

37

Q value update

def update_q(q_table, transitions, state, action, alpha, gamma):
reward, next_state = transitions[state][action][1:3]
q_table is a n_states * num_actions array. It stores the q val for each (state,
action)
old_q_sa = q_table[state, action]
max_future_q = max(q_table[next_state, :]) - old_q_sa # Estimated future reward
Formula above
q_table[state, action] = (1 - alpha) * old_q_sa + alpha * (reward + gamma *
max_future_q)
return q_table

38

Q Learning: Pros & Cons

- Choose action with max Q value → Perfect game
- Complies with the definition of a good reward
- No need to use a perfect transitions matrix
- Proven to converge in the limit

Pros

Cons
- Requires an exploration policy → Only learns from memory
- “The limit” can be infeasible in practice
- The Q table can be extremely large

39

Deep RL parameter hell

- Exploration policy params
- Optimizer
- Advantage
- Architecture
- Opt params: LR, momentum...

- Batch size
- Gradient update freq.
- Loss clipping
- Gradient clipping
- Random seed!?

40

4. Deep Reinforcement learning

41

Deep Reinforcement learning

- Allows traditional algorithms to scale with increasing state
space complexity

- Replaces the Q value / Value function tables with a DNN

- Defines an objective function to train the network

42

Deep RL paradigm shift

It is all about minimizing
a loss function

Replaces “Tables”
with “black boxes”

A bunch of new
metaparameters

Need to stabilize gradients

43

Deep Q learning

error = Hubber_loss(- (reward + gamma *))

Q(S | t=0) Q(S | t=1)

- Tensors as input → DNN train on
batches

- Requires applying masks

- A lot of variants to improve stability

- Extremely dependent on
metaparameters

44

Policy Gradient

- Change the probability of the network of choosing a
given action

- Use a Q like function (Advantage) to influence the
decisions of the network when defining the loss

- Let backpropagation take care of the rest

45

Policy Gradient

46

47

48

Machine Learning

RL

Superv. Unsup.

● Training / Test
dataset

● Labeled data

● A big enough
dataset

● No Labels

● Generate the dataset
● Build label from rewards

49

Useful things to remember

- No control over how features are learned

- Only learning from memory

- Exploration is key

- Converges to a local minima

50

Dirty tricks that happen to work
- Reward & lives clipping

- Gradient & loss clipping

- Use a memory to decorrelate samples

- Batch normalization & Regularization

- Computer vision tricks are welcome

51

52

53

https://docs.google.com/file/d/0B4O5UYhOTkQYcHpBbHR4ZkNLVXc/preview
http://www.youtube.com/watch?v=8NLaNJhxkVA
http://www.youtube.com/watch?v=j0w7fuoJuD0
http://www.youtube.com/watch?v=SmSTW4RHjr0

Mandatory slide about me
Guillem Duran Ballester

- Telecommunications engineer
- Data Science enthusiast & PyData Mallorca organiser
- Worked as an AI engineer at source{d}
- 4 years learning AI for the pleasure of finding things out
- Learning to be a developer

54

Thank you!

@Miau_DB Guillem-db55

5. Appendix

56

RL fundamentals

- Notebooks on AI: State space structure

- A Karpathy blog: Playing Pong with a DQN

- Let’s make a DQN

- David Silver UCL course on RL & videos

- Nando de Freitas course, mostly DL

57

http://karpathy.github.io/2016/05/31/rl/
https://jaromiru.com/2016/09/27/lets-make-a-dqn-theory/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/user/ProfNandoDF/videos

Environment libraries

- OpenAI Roboschool: Robot simulation

- OpenAI Universe: gym on VNC servers inside docker
containers

- Intel Nervana Coach: Environments + DLR algorithms

- Deepmind Lab:

- Deepmind Pysc2: Star Craft 2 - like environments

58

https://blog.openai.com/roboschool/
https://github.com/openai/universe
https://www.intelnervana.com/reinforcement-learning-coach-intel/
https://deepmind.com/research/open-source/open-source-environments/
https://github.com/deepmind/pysc2

Deep RL libraries

- Tensorflow Agents

- OpenAI baselines

- PyTorch-rl

- Keras-rl

- Tensorforce

- Nervana Coach

59

https://github.com/tensorflow/agents
https://github.com/openai/baselines
https://github.com/jingweiz/pytorch-rl
https://github.com/matthiasplappert/keras-rl
https://github.com/reinforceio/tensorforce

Papers

- Agents on Starcraft 2

- Imagination Augmented Agents

- Alphago zero

- Evolutionary strategies

60

https://deepmind.com/documents/110/sc2le.pdf
https://arxiv.org/abs/1707.06203
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://arxiv.org/abs/1703.03864

The reward

- Scalar that measures “how good an action is”

- Associated to an (state, action) tuple

- The better the action, the higher the reward

- It should have high sensibility → Change frequently

61

