
On non-existent 0-days, stable 
binary exploits and user interaction 

 

Alisa Esage 

Esage Lab // ООО ЦОР 



NEED SOME 0-DAY REMOTE EXPLOITS* 
FOR TOP SOFTWARE/OS, FAST 

GOAL 



How they do it 

• Target memory corruption 
• X% fuzzing + Y% static analysis 

– Only combination is viable 
– Other approaches are inmature 

• Fuzzing: massive overhead 
– Set up a framework 
– Develop patterns/heuristics !! 
– Take machine time 
– Analyze crash dumps ! 
– Exploit, bypass DEP/ASLR/Sandbox !!! 

• Perspective  
– protections harden 
– need more and more time to succeed 
– and resources to begin with 

 



Perspective vectors 

• By-design vulnerabilities 
– E.g. DLL Hijacking, UI redressing, 

LD_LIBRARY_PATH… 

• Sandbox bypass for complex systems 
– E.g. JAVA: bypass SecurityManager -> full 

privileges for unsigned applet -> win 

• Certificates 
– E.g. Adobe PDF: signed document -> trusted 

document -> full-privileged JavaScript -> win 

 



Why DLL Hijacking? 

• Test hacking skills! 
– Succeed with a blind alley before hitting the highway  

• Looks easy 
– Plenty of previous research, e.g. binaryplanting.com 
– Interns must do research, too 

• Real world targetted attacks: CVE-2011-1980, CVE-2011-
1991, CVE-2011-2100 
– They work 

• MS12-046 vbe6.dll 
– They still exist! 

• OS behaviour undocumented 
– There is place for research 

 



Research focus 

• Top, clean platforms 
– Windows 7 
– Windows XP 
– Office 2010 
– Office 2007 
– Adobe Acrobat/Reader 

• Find a new remote delivery vector  
– Not a “.dll” in e-mail attachment 
– Not a “.dll” in a network share 

• Find something yet unfound 
 



Tech recap 

• Exe -> dll by relative path 

• DLL Search Order 

• Current Directory (CD) – MS DOS rudiment 

• Default: app path 

• File open: file path 

• Some other changes 

• Exploitation profit: Bypass restrictions, LPE, 
RCE 

• Vectors: local, local network, client-side 

 



Advantages 

• 100% stable exploit 

• 100% silent execution on non-supported 
targets 

• Very little overhead 

• No mess with protections 

• ! Not fixable globally with simple measures 
like DEP/ASLR 
– Only developers education can help 

– Will reappear in new software forever 



Challenges 

• Search 

– “Trivial => already found” myth 

• Exploitation 

– Nobody ever tried to manipulate CD 

• User interaction  

– Triggered by clicking menus… now what? 

• Masking / delivery 

– Document + DLL binding looks suspicious 

 



NONEXISTENT? 
Arguing myths 



7500+ missing Windows DLLs 

 

 



20+ Mb filtered log per app 

 

 



NOT EXPLOITABLE? 
Arguing myths 



Good! 

 

 



Not so good 

 

 



Goal: manipulate CD 

 

 



CD internals 
• 0:005> dt _PEB @$peb -r 
• ntdll!_PEB 
• ... 
•    +0x010 ProcessParameters : 0x00020000 _RTL_USER_PROCESS_PARAMETERS 
•    ...  
•       +0x024 CurrentDirectory : _CURDIR 
•          +0x000 DosPath          : _UNICODE_STRING "C:\Documents and Settings\h\My Documents\" 
•          +0x008 Handle           : 0x00000b50 Void 
•   
• // получение адреса CurrentDirectory (первый dword -  размеры, второй – указатель на строку) 
• 0:005> dd poi(@$peb+0x010)+0x024 
• 00020024  02080052 00020290 00000b50 01840182 
• 00020034  00020498 006e006c 0002061c 00740072 

 
• // проверка адреса CD 
• 0:005> du 0x20290 
• 00020290  "C:\Documents and Settings\h\My D" 
• 000202d0  "ocuments\" 
•   
• // точка останова 
• 0:005> ba w 4 0x20290 



CD internals - 2 

• MSDN: “it is the directory in which the active application started, 
unless it has been explicitly changed“ – actually no 

• Way of starting an app affects CD 
– App exec default: app dir  
– App exec: Software\Microsoft\Windows\CurrentVersion\App Paths 
– Exec by lnk: lnk dir 
– Document open: document dir 
– CreateProcess():  lpCurrentDirectory 

• CD set internally by some API 
– GetOpenFileName() / GetSaveFileName() 
– FindFirstFile() /  FindNextFile() (presumably) 

• Many file system APIs depend on CD 
– So developers call SetCurrentDirectory() every now and then 



So…? 

 

 



Local exploitation 

• Bypass restrictions/LPE: place exploit DLL 
into unrestricted location 

• Consider %PATH% 



PATH FTW 

 

 



Remote exploitation 

• Just open a document (the lucky case) 

• Make user Open/Save/Import/Export files, then 
trigger 

• Or automate file operations with a script 

• Induce an app state with CD changed by 
developer 

• Set CD explicitly 

• Find an app that CreateProcess()-es vulnerable 
app with good CD 

 



EXPLOIT DLL TOO OBVIOUS? 
Arguing myths 



No hiding 

 

 



A needle in the haystack 

 

 



Torrents 

 

 



Browser UI redressing 

• IE9 on Windows 7  

• Context: Local directory, network shared 
directory, WebDAV 

• Explorer dir underneath a website 

• Demo 

• Also works in Chrome on Windows 7, but 
restricted to file download operations 

 



Browser UI redressing (2) 

• Chrome on Windows 7  

• Context: remote 

• Web server directory underneath a website 

• Click-jacking game to silently download 
necessary files one-by-one  

• Until all files are saved in %Downloads%  

• Open exploit document 



Set CD macro (MS Office) 

• Context: local dir, network shared dir 

• You can just execute arbitrary DLL from a 
macro 

• But better to execute a 
kernel32!SetCurrentDirectory() API to fool 
forensic analysts 

• Demo 

 



MHT 

• Single file in e-mail attachment 

• Can contain any types of files, incl. binary 

• Browser extracts files to %INET_TMP% 

• Open exploit document by clicking <a 
href=“.\files\document.txt” 

• Exploit DLL will be executed from the same 
directory 

• IE9 on Windows 7 

 



Archives 

• Any archives for Windows that extract all 
files by default? Not SFX of course 

• WinRAR (latest): browse archive, double-
click a HTML document only 

– Will extract ALL files into %TMP% 

– Including exploit DLL 

– Local browser context already 

 



WinRAR FTW 

 

 



Multistage 

• Case: DLL triggered by manual file import, no 
registered extension handler – unexploitable? 

• Stage 1: User gets an e-mail from admin (fake) 
instructing to install the attached reg-file (looks 
innocent) 

• In two weeks, stage 2: user gets an e-mail from 
a friend with a RAR-ed html game 

• Click-jacked open file -> exploit 
• Or open file via network share 
• As simple as the user is 

 



So, what do we have? 

• Some 0-day vulnerabilities in up-to-date top 
platforms 

– Think of non-top software 

• Ways to manipulate CD 

• Ways to hide DLL 

• Remote DLL Hijacking exploitation looks like 
normal client-side exploitation 

• What else? 



Conclusions 

• Is this a good vector for mass attacks? 
– Authors of CVE-2011-1991, 1980, 2100 could tell us for sure 

– I say no 

– 0-day exploits are not necessary for mass attacks 
anyway 

• Excellent vector for rapid targeted/onsite attacks 
– Plenty of vulnerabilities everywhere  

– Easy ‘n fast to find in arbitrary environment 

– Ease ‘n fast to exploit (after this presentation  ) 

• Even the most trivial bug can be worked down to a 
good exploit 



Questions? 

Thanks to my team and interns 

 

 

Thank you for attention 

 

 

@alisaesage 


