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AddressSanitizer
use-after-free and buffer overflows



Everything is in C/C++

(even if you don't notice that):

● VMs (Java, Perl, Python)
● DBs (MySQL, PostgreSQL)
● Web servers (Apache, nginx)
● Web browsers (Chrome, Firefox, Safari)
● Everything else (libpng, libz, libxyz)



Why C/C++?

Efficient memory management + 
Proximity to hardware = 
   Speed

Hard to program +
Hard to debug =
Memory errors -- open gates to hackers



Binary instrumentation:
● Valgrind, Dr. Memory, Intel Parallel Studio, 

Purify, Bounds Checker, Insure++, ...
● Veeery slow (> 20x), heap bugs only

Debug malloc:
● Page-level protection (efence, libgmalloc, 

Page Heap)
● Magic values
● Inaccurate (may miss bugs), slow, heap only

Debugging memory issues



AddressSanitizer (ASan)

Instrumenting compiler + a runtime library

A bit of history:
● May 2011: v. 0.0
● May 2012: part of LLVM 3.1
● upcoming support in GCC 4.8

clang -fsanitize=address foo.c

Works on Linux, Mac OS, Android



AddressSanitizer

● buffer overflows
○ Heap
○ Stack
○ Global objects

● use-after-free, use-after-return
● double-free, memcpy-param-overlap etc.



ASan vs Valgrind vs debug malloc
Valgrind *-malloc ASan

Heap out-of-bounds YES Sometimes YES

Stack out-of-bounds NO NO YES

Global out-of-bounds NO NO YES

Use-after-free YES YES YES

Use-after-return NO NO Sometimes

Uninitialized reads YES NO NO

CPU Overhead 10x-300x ?? 1.5x-3x



Report example: use-after-free

ERROR: AddressSanitizer heap-use-after-free 
  on address 0x7fe8740a6214 
  at pc 0x40246f bp 0x7fffe5e463e0 sp 0x7fffe5e463d8

READ of size 4 at 0x7fe8740a6214 thread T0
    #0 0x40246f in main example_UseAfterFree.cc:4
    #1 0x7fe8740e4c4d in __libc_start_main ??:0

0x7fe8740a6214 is located 4 bytes inside of 400-byte 
region 

freed by thread T0 here:
    #0 0x4028f4 in operator delete[](void*) _asan_rtl_
    #1 0x402433 in main example_UseAfterFree.cc:4

previously allocated by thread T0 here:
    #0 0x402c36 in operator new[](unsigned long) 
_asan_rtl_
    #1 0x402423 in main example_UseAfterFree.cc:2



Example: stack-buffer-overflow

ERROR: AddressSanitizer stack-buffer-overflow 
  on address 0x7f5620d981b4
  at pc 0x4024e8 bp 0x7fff101cbc90 sp 0x7fff101cbc88

READ of size 4 at 0x7f5620d981b4 thread T0
    #0 0x4024e8 in main example_StackOutOfBounds.cc:4
    #1 0x7f5621db6c4d in __libc_start_main ??:0
    #2 0x402349 in _start ??:0

Address 0x7f5620d981b4 is located at offset 436 in frame 
<main>
of T0's stack:
  This frame has 1 object(s):
    [32, 432) 'stack_array'



Trophies

● Chromium (including Webkit)
● Hundreds of bugs within Google
● Firefox
● FreeType, FFmpeg, WebRTC, libjpeg-turbo 
● Perl, LLVM, GCC
● MySQL
● mod_rails
● even VIM and Git!

Which of the above do you use?



Fun facts

Google paid > $130K to external security 
researchers using ASan (like attekett and 
miaubiz)

One of the bugs Pinkie Pie exploited during the 
last Pwnium was in fact detectable with ASan





Shadow byte
● Every aligned 8-byte word of memory has only 9 states
● First N bytes are addressable, the rest 8-N bytes are not
● Can encode in 1 byte (shadow byte)
● Extreme: 128 application bytes map to 1 shadow byte.

Addressable

Unaddressable

Shadow

0

7

6

5

4

3

2

1

-1



Mapping: Shadow = (Addr>>3) + Offset

0xffffffff
0x40000000

0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space



Mapping: Shadow = (Addr>>3) + 0

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

● Requires -fPIE -pie (linux)
● Gives ~6% speedup on x86_64



*a = ...

Instrumentation: 8 byte access

char *shadow = (a>>3)+Offset;
if (*shadow)

   ReportError(a);
*a = ...



*a = ...

Instrumentation: N byte access (N=1, 2, 4)

char *shadow = (a>>3)+Offset;
if (*shadow &&
    *shadow <= ((a&7)+N-1))
   ReportError(a);
*a = ...



Instrumentation example (x86_64)

shr $0x3,%rax             # shift by 3 
mov $0x100000000000,%rcx 
or %rax,%rcx              # add offset
cmpb $0x0,(%rcx)          # load shadow
je 1f <foo+0x1f>          # check for zero
call 409920               # __asan_report
movq $0x1234,(%rdi)       # original store



void foo() {
  
  char a[328];

  <------------- CODE ------------->

}

Instrumenting stack



void foo() {
  char rz1[32];  // 32-byte aligned
  char a[328];     
  char rz2[24];
  char rz3[32];  
  int  *shadow = (&rz1 >> 3) + kOffset;
  shadow[0] = 0xffffffff;   // poison rz1
  
  shadow[11] = 0xffffff00;  // poison rz2
  shadow[12] = 0xffffffff;  // poison rz3
  <------------- CODE ------------->
  shadow[0] = shadow[11] = shadow[12] = 0;           
}

Instrumenting stack



Instrumenting globals 

int a;

struct {
  int original;
  char redzone[60];
} a;  // 32-aligned



Run-time library 

● Initializes shadow memory at startup
● Provides full malloc replacement

○ Insert poisoned redzones around allocated memory
○ Quarantine for free-ed memory
○ Collect stack traces for every malloc/free

● Provides interceptors for functions like memset
● Prints error messages



Performance

● 1.7x on benchmarks (SPEC CPU 2006)
● Almost no slowdown for GUI programs

○ Chrome, Firefox
○ They don't consume all of CPU anyway 

● 1.5x–4x slowdown for server side apps with -O2
○ The larger the slower (instruction cache)



Memory overhead: 2x–4x

● Redzones
○ Heap: 128–255 bytes / allocation
○ Global: 32–63 bytes / global var
○ Stack: 32–63 bytes / addr-taken local var (stack size 

increased up to 3x)
● Fixed size quarantine (256M)

● Shadow:
○ mmap(MAP_NORESERVE) 1/8-th of all address space

■ 16T on 64-bit
■ 0.5G on 32-bit

○ not more than (Heap + Globals  + Stack + Quarantine) / 8



Ok, we have a hammer.
Now what?



Run the tests

The more the better.



ASan @Chrome

Pre-submit trybots (optional)
Buildbots checking the new commits
ClusterFuzz -- 50,000,000 tests/day
Special "canary" Chrome build



Canarizing the desktop app



-1-day bug detection
glider: Of course there're plenty of ClusterFuzz samples 
that we can use to show that ASan can detect problems in 
Chrome. But maybe there've been any actual exploits for 
problems detectable with ASan?

cevans: Nothing springs to mind. Because of a 
combination of ASan, ClusterFuzz, our reward program, 
autoupdate and a culture of prompt bug fixing, we tend to 
find the bugs first, so no actual exploits.



Canarizing the production



Honeypot?

Not sure. Maybe.
I'm not a real welder.

http://johns-jokes.com/afiles/images/saw_014_welding_mask.jpg



A poor man's sandbox

● bearable slowdown
○ < 2x on average
○ 3x–3.5x on large binaries (instruction cache)

● instant crashes on memory errors
○ a bit annoying for desktop users
○ good for server-side (though DoS still possible)



Is it safer?

ASan is a blackbox (code and heap layout are 
uncommon)

UAF/UAR
● need to exhaust the quarantine (250M)
Buffer overflow
● need to break the shadow protection 

somehow
● or exploit an overflow in the library code



Still vulnerable – we can do better

Not (yet) instrumented:
● JITted code
● inline assembly
● syscalls
● library routines

○ sprintf() is still a problem
○ wrappers to the rescue

No redzones in PODs
Little randomization



Future work

● Avoid redundant checks (static analysis)
● Instrument or recompile libraries
● Instrument inline assembly 
● Adapt to use in a kernel 
● Port to Windows 

○ Mostly, frontend work (run-time works)
○ Plain C and simple C++ already works
○ Help is welcome! 



ThreadSanitizer
data races



ThreadSanitizer v1

● Based on Valgrind
● Used since 2009
● Slow (20x–300x slowdown)

○ Found thousands races
○ Faster than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)



ThreadSanitizer v2 overview

● Simple compile-time instrumentation
● Redesigned run-time library

○ Fully parallel 
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports



Slowdown

Application Tsan1 Tsan2 Tsan1/Tsan2

RPC benchmark 283x 8.5x 33x

Server app test 28x 2x 14x

String util test 30x 2.4x 13x



Compiler instrumentation

void foo(int *p) {
  *p = 42;
}

void foo(int *p) {
  __tsan_func_entry(__builtin_return_address(0));
  __tsan_write4(p);
  *p = 42;
  __tsan_func_exit()
}



Direct mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = N * (Addr & kMask); // Requires -pie



Shadow cell
An 8-byte shadow cell represents one memory 
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW



N shadow cells per 8 application bytes 
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW



Example: first access
T1

E1

0:2

W

Write in thread T1



Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2



Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3



Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not 
"happen-before" E3

 



Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)



Shadow word eviction 

● When all shadow words are filled, one 
random is replaced



Informative reports

● Need to report stack traces for two memory 
accesses:
○ current (easy)
○ previous (hard)

● TSan1: 
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection



Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit 
○ Information will be lost after some time

● Replay the event buffer on report
○ Unlimited number of frames 



Function interceptors

● 100+ interceptors 
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...



Trophies

● 200+ bugs in Google server-side apps (C++)
● 100+ bugs in Go programs 

○ 30+ bugs in Go stdlib
● Several races in OpenSSL 

○ 1 fixed, ~5 'benign'



Limitations

● Only 64-bit Linux
● Heavily relies on TLS

○ Slow TLS on some platforms
● Hard to port to 32-bit platforms :(

○ Too small address space
○ Expensive atomic 64-bit load/store

● Does not instrument:
○ pre-built libraries
○ inline assembly 



Demo time



AddressSanitizer
Stack use-after-return -- common in large 
programs with callbacks, very hard to debug.

Stack buffer overflow -- can sometimes be 
caught by stack protectors.

ASan detects both easily.



ThreadSanitizer
Thread-unsafe reference counting =>
                       => execution of malicious code.

Basically impossible to debug.

TSan finds instantly, explains, helps to verify 
fix.

$ clang -fsanitize=thread



Practice
bug-list.txt -- list of bugs in the tests
fuzz.sh -- run all the tests under ASan/TSan
test*.cc -- tests accepting a 2-char argument, some 
arguments trigger bugs in the tests.

$ clang -fsanitize=address -g t.c
$ ./a.out aa 2>& | ./asan_symbolize.py
$ clang -fsanitize=thread -fPIE -pie -g t.c
$ ./a.out aa

Task: map test numbers to bug descriptions



Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

{glider,dvyukov}@google.com

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/

