
Forewarned is forearmed:
AddressSanitizer & ThreadSanitizer

Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany,

Evgeniy Stepanov, Dmitry Vyukov

November 2012

● AddressSanitizer
○ detects use-after-free and buffer

overflows (C++)
● ThreadSanitizer

○ detects data races (C++ & Go)
● Demos
● Practice

Agenda

AddressSanitizer
use-after-free and buffer overflows

Everything is in C/C++

(even if you don't notice that):

● VMs (Java, Perl, Python)
● DBs (MySQL, PostgreSQL)
● Web servers (Apache, nginx)
● Web browsers (Chrome, Firefox, Safari)
● Everything else (libpng, libz, libxyz)

Why C/C++?

Efficient memory management +
Proximity to hardware =
 Speed

Hard to program +
Hard to debug =
Memory errors -- open gates to hackers

Binary instrumentation:
● Valgrind, Dr. Memory, Intel Parallel Studio,

Purify, Bounds Checker, Insure++, ...
● Veeery slow (> 20x), heap bugs only

Debug malloc:
● Page-level protection (efence, libgmalloc,

Page Heap)
● Magic values
● Inaccurate (may miss bugs), slow, heap only

Debugging memory issues

AddressSanitizer (ASan)

Instrumenting compiler + a runtime library

A bit of history:
● May 2011: v. 0.0
● May 2012: part of LLVM 3.1
● upcoming support in GCC 4.8

clang -fsanitize=address foo.c

Works on Linux, Mac OS, Android

AddressSanitizer

● buffer overflows
○ Heap
○ Stack
○ Global objects

● use-after-free, use-after-return
● double-free, memcpy-param-overlap etc.

ASan vs Valgrind vs debug malloc
Valgrind *-malloc ASan

Heap out-of-bounds YES Sometimes YES

Stack out-of-bounds NO NO YES

Global out-of-bounds NO NO YES

Use-after-free YES YES YES

Use-after-return NO NO Sometimes

Uninitialized reads YES NO NO

CPU Overhead 10x-300x ?? 1.5x-3x

Report example: use-after-free

ERROR: AddressSanitizer heap-use-after-free
 on address 0x7fe8740a6214
 at pc 0x40246f bp 0x7fffe5e463e0 sp 0x7fffe5e463d8

READ of size 4 at 0x7fe8740a6214 thread T0
 #0 0x40246f in main example_UseAfterFree.cc:4
 #1 0x7fe8740e4c4d in __libc_start_main ??:0

0x7fe8740a6214 is located 4 bytes inside of 400-byte
region

freed by thread T0 here:
 #0 0x4028f4 in operator delete[](void*) _asan_rtl_
 #1 0x402433 in main example_UseAfterFree.cc:4

previously allocated by thread T0 here:
 #0 0x402c36 in operator new[](unsigned long)
_asan_rtl_
 #1 0x402423 in main example_UseAfterFree.cc:2

Example: stack-buffer-overflow

ERROR: AddressSanitizer stack-buffer-overflow
 on address 0x7f5620d981b4
 at pc 0x4024e8 bp 0x7fff101cbc90 sp 0x7fff101cbc88

READ of size 4 at 0x7f5620d981b4 thread T0
 #0 0x4024e8 in main example_StackOutOfBounds.cc:4
 #1 0x7f5621db6c4d in __libc_start_main ??:0
 #2 0x402349 in _start ??:0

Address 0x7f5620d981b4 is located at offset 436 in frame
<main>
of T0's stack:
 This frame has 1 object(s):
 [32, 432) 'stack_array'

Trophies

● Chromium (including Webkit)
● Hundreds of bugs within Google
● Firefox
● FreeType, FFmpeg, WebRTC, libjpeg-turbo
● Perl, LLVM, GCC
● MySQL
● mod_rails
● even VIM and Git!

Which of the above do you use?

Fun facts

Google paid > $130K to external security
researchers using ASan (like attekett and
miaubiz)

One of the bugs Pinkie Pie exploited during the
last Pwnium was in fact detectable with ASan

Shadow byte
● Every aligned 8-byte word of memory has only 9 states
● First N bytes are addressable, the rest 8-N bytes are not
● Can encode in 1 byte (shadow byte)
● Extreme: 128 application bytes map to 1 shadow byte.

Addressable

Unaddressable

Shadow

0

7

6

5

4

3

2

1

-1

Mapping: Shadow = (Addr>>3) + Offset

0xffffffff
0x40000000

0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

Mapping: Shadow = (Addr>>3) + 0

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

● Requires -fPIE -pie (linux)
● Gives ~6% speedup on x86_64

*a = ...

Instrumentation: 8 byte access

char *shadow = (a>>3)+Offset;
if (*shadow)

 ReportError(a);
*a = ...

*a = ...

Instrumentation: N byte access (N=1, 2, 4)

char *shadow = (a>>3)+Offset;
if (*shadow &&
 *shadow <= ((a&7)+N-1))
 ReportError(a);
*a = ...

Instrumentation example (x86_64)

shr $0x3,%rax # shift by 3
mov $0x100000000000,%rcx
or %rax,%rcx # add offset
cmpb $0x0,(%rcx) # load shadow
je 1f <foo+0x1f> # check for zero
call 409920 # __asan_report
movq $0x1234,(%rdi) # original store

void foo() {

 char a[328];

 <------------- CODE ------------->

}

Instrumenting stack

void foo() {
 char rz1[32]; // 32-byte aligned
 char a[328];
 char rz2[24];
 char rz3[32];
 int *shadow = (&rz1 >> 3) + kOffset;
 shadow[0] = 0xffffffff; // poison rz1

 shadow[11] = 0xffffff00; // poison rz2
 shadow[12] = 0xffffffff; // poison rz3
 <------------- CODE ------------->
 shadow[0] = shadow[11] = shadow[12] = 0;
}

Instrumenting stack

Instrumenting globals

int a;

struct {
 int original;
 char redzone[60];
} a; // 32-aligned

Run-time library

● Initializes shadow memory at startup
● Provides full malloc replacement

○ Insert poisoned redzones around allocated memory
○ Quarantine for free-ed memory
○ Collect stack traces for every malloc/free

● Provides interceptors for functions like memset
● Prints error messages

Performance

● 1.7x on benchmarks (SPEC CPU 2006)
● Almost no slowdown for GUI programs

○ Chrome, Firefox
○ They don't consume all of CPU anyway

● 1.5x–4x slowdown for server side apps with -O2
○ The larger the slower (instruction cache)

Memory overhead: 2x–4x

● Redzones
○ Heap: 128–255 bytes / allocation
○ Global: 32–63 bytes / global var
○ Stack: 32–63 bytes / addr-taken local var (stack size

increased up to 3x)
● Fixed size quarantine (256M)

● Shadow:
○ mmap(MAP_NORESERVE) 1/8-th of all address space

■ 16T on 64-bit
■ 0.5G on 32-bit

○ not more than (Heap + Globals + Stack + Quarantine) / 8

Ok, we have a hammer.
Now what?

Run the tests

The more the better.

ASan @Chrome

Pre-submit trybots (optional)
Buildbots checking the new commits
ClusterFuzz -- 50,000,000 tests/day
Special "canary" Chrome build

Canarizing the desktop app

-1-day bug detection
glider: Of course there're plenty of ClusterFuzz samples
that we can use to show that ASan can detect problems in
Chrome. But maybe there've been any actual exploits for
problems detectable with ASan?

cevans: Nothing springs to mind. Because of a
combination of ASan, ClusterFuzz, our reward program,
autoupdate and a culture of prompt bug fixing, we tend to
find the bugs first, so no actual exploits.

Canarizing the production

Honeypot?

Not sure. Maybe.
I'm not a real welder.

http://johns-jokes.com/afiles/images/saw_014_welding_mask.jpg

A poor man's sandbox

● bearable slowdown
○ < 2x on average
○ 3x–3.5x on large binaries (instruction cache)

● instant crashes on memory errors
○ a bit annoying for desktop users
○ good for server-side (though DoS still possible)

Is it safer?

ASan is a blackbox (code and heap layout are
uncommon)

UAF/UAR
● need to exhaust the quarantine (250M)
Buffer overflow
● need to break the shadow protection

somehow
● or exploit an overflow in the library code

Still vulnerable – we can do better

Not (yet) instrumented:
● JITted code
● inline assembly
● syscalls
● library routines

○ sprintf() is still a problem
○ wrappers to the rescue

No redzones in PODs
Little randomization

Future work

● Avoid redundant checks (static analysis)
● Instrument or recompile libraries
● Instrument inline assembly
● Adapt to use in a kernel
● Port to Windows

○ Mostly, frontend work (run-time works)
○ Plain C and simple C++ already works
○ Help is welcome!

ThreadSanitizer
data races

ThreadSanitizer v1

● Based on Valgrind
● Used since 2009
● Slow (20x–300x slowdown)

○ Found thousands races
○ Faster than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
● Redesigned run-time library

○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

Slowdown

Application Tsan1 Tsan2 Tsan1/Tsan2

RPC benchmark 283x 8.5x 33x

Server app test 28x 2x 14x

String util test 30x 2.4x 13x

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = N * (Addr & kMask); // Requires -pie

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW

N shadow cells per 8 application bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not
"happen-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow words are filled, one
random is replaced

Informative reports

● Need to report stack traces for two memory
accesses:
○ current (easy)
○ previous (hard)

● TSan1:
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection

Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit
○ Information will be lost after some time

● Replay the event buffer on report
○ Unlimited number of frames

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Trophies

● 200+ bugs in Google server-side apps (C++)
● 100+ bugs in Go programs

○ 30+ bugs in Go stdlib
● Several races in OpenSSL

○ 1 fixed, ~5 'benign'

Limitations

● Only 64-bit Linux
● Heavily relies on TLS

○ Slow TLS on some platforms
● Hard to port to 32-bit platforms :(

○ Too small address space
○ Expensive atomic 64-bit load/store

● Does not instrument:
○ pre-built libraries
○ inline assembly

Demo time

AddressSanitizer
Stack use-after-return -- common in large
programs with callbacks, very hard to debug.

Stack buffer overflow -- can sometimes be
caught by stack protectors.

ASan detects both easily.

ThreadSanitizer
Thread-unsafe reference counting =>
 => execution of malicious code.

Basically impossible to debug.

TSan finds instantly, explains, helps to verify
fix.

$ clang -fsanitize=thread

Practice
bug-list.txt -- list of bugs in the tests
fuzz.sh -- run all the tests under ASan/TSan
test*.cc -- tests accepting a 2-char argument, some
arguments trigger bugs in the tests.

$ clang -fsanitize=address -g t.c
$./a.out aa 2>& | ./asan_symbolize.py
$ clang -fsanitize=thread -fPIE -pie -g t.c
$./a.out aa

Task: map test numbers to bug descriptions

Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

{glider,dvyukov}@google.com

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/

